



## DEPARTMENT OF MECHANICAL ENGINEERING

### FISH BOWL TECHNIQUES

|                             |                                                                          |
|-----------------------------|--------------------------------------------------------------------------|
| Academic year               | : 2022-2023                                                              |
| Degree                      | : B.E.                                                                   |
| Year & Semester             | : IV/VII                                                                 |
| Course Code & Title         | : CME396 / Process Planning and Cost Estimation                          |
| Name of the Faculty Member  | : Dr. K. Arul                                                            |
| Date                        | : 14/07/2022                                                             |
| Innovative Practice         | : Fish bowl Techniques                                                   |
| Topic                       | : Steps in process selection, Production equipment and tooling selection |
| Total Students Participated | : 23                                                                     |

#### Introduction

The Fish Bowl Technique is an interactive, student-centered teaching–learning method that promotes active participation, critical thinking, and collaborative problem-solving. In this approach, a small group of students actively discusses and analyzes a problem in an inner circle (the “fish bowl”), while the remaining students observe, listen, and reflect from an outer circle. Roles are rotated to ensure inclusive participation. For the Process Planning and Cost Estimation, which require logical sequencing, decision-making, and cost analysis, the Fish Bowl Technique enables students to apply theoretical knowledge to practical manufacturing scenarios. By engaging in structured discussion on process selection, machining sequence, time estimation, and cost calculation, students gain deeper conceptual clarity and industry-oriented thinking skills.

#### Methodology

1. Students are divided into an inner circle (discussion group) and an outer circle (observers).
2. The inner circle analyzes the component, decides the process sequence, and estimates time and cost through discussion.
3. The outer circle observes the logic, assumptions, and calculations.
4. Roles are rotated to ensure equal participation.
5. Finally, the faculty consolidates key points and provides feedback.



## Outcomes

1. Students understand how to choose suitable manufacturing processes based on product requirements and material characteristics.
2. Students gain the ability to select the right machines and tooling for efficient and accurate production.
3. Students can evaluate manufacturing feasibility considering cost, quality, production volume, and capability.
4. Students develop process-planning skills including sequencing of operations, tool selection, and setup planning.
5. Students learn to optimize productivity by choosing processes and equipment that minimize waste, rework, and production time.

## Student Participation

- Total Students: 23
- Participation Mode: Group Discussion
- Engagement: Students actively discussed, clarified doubts, and provided feedback to their peers.

## Relevant PO's :

| PO1 | PO 2 | PO 3 | PO 4 | PO 5 |
|-----|------|------|------|------|
|     |      |      |      |      |



## Participant Name List

| S. NO | REGISTER NO  | STUDENTS NAME           |
|-------|--------------|-------------------------|
| 1     | 312819114001 | Abin A                  |
| 2     | 312819114002 | Amudan B                |
| 3     | 312819114003 | Ganesh S                |
| 4     | 312819114004 | Kumaresan P             |
| 5     | 312819114005 | Lingesh M               |
| 6     | 312819114006 | Peter J                 |
| 7     | 312819114007 | Sarankumar E            |
| 8     | 312819114008 | Selva Ganesh T          |
| 9     | 312819114010 | Surya R                 |
| 10    | 312819114011 | Thulasi Daran J         |
| 11    | 312819114012 | Vishweshwaran S         |
| 12    | 312819114013 | Xavier Rayan S          |
| 13    | 312819114301 | Anil Kumar M            |
| 14    | 312819114302 | Asaithambi S            |
| 15    | 312819114303 | Chandru S               |
| 16    | 312819114304 | Gobinath G              |
| 17    | 312819114305 | Gokul R                 |
| 18    | 312819114306 | Kamash M                |
| 19    | 312819114307 | Karan Singh Shekhawat M |
| 20    | 312819114308 | Keerthivasan K          |
| 21    | 312819114309 | Prakash Dey Jk          |
| 22    | 312819114310 | Tholkappiun T           |
| 23    | 312819114311 | Vijay Pun Magar         |



**Fish bowl Techniques conducted on 14.07.2022 by Dr. K. Arul for  
Process Planning and Cost Estimation Course**

The valuable feedbacks can be provided in the below link for the above innovative teaching method.

<https://docs.google.com/forms/d/1q1bivFwkvlCQHRqhUMOR3mNPZszKV5OnFgWvXt7bATI>

Faculty In charge

HoD/Mech