ANNA UNIVERSITY, CHENNAI NON-AUTONOMOUS AFFILIATED COLLEGES

M. E. STRUCTURAL ENGINEERING

REGULATIONS 2021 CHOICE BASED CREDIT SYSTEM

1. PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

Graduates of the Programme M E Structural Engineering will

- **PEO1** Gain knowledge and skills in structural engineering which will enable them to have a career and professional accomplishment in the public or private sector organizations
- **PEO2** Become consultants in Structural Engineering and solve complex real-life issues related to the analysis, design and maintenance of structures under various environmental conditions.
- **PEO3** Contribute to the enhancement of knowledge in Structural Engineering by performing quality research in institutions of international repute or Research organizations or Academia.
- **PEO4** Practice their profession with good communication, leadership, ethics and social responsibility and formulate solutions that are technically sound, economically feasible, and socially acceptable.
- **PEO5** Graduates will function in multi-disciplinary teams and adapt to evolving technologies through life-long learning and innovation

2. PROGRAMME OUTCOMES (POs):

PO1	An ability to independently carry out research/investigation and development work to
	solve practical problems
PO2	An ability to write and present a substantial technical report/document
PO3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor's program

3. PROGRAM SPECIFIC OUTCOMES (PSOs):

Graduates of the program M.E. Structural Engineering will be able to

PSO1	Knowledge of Structural Engineering discipline	Acquire in-depth knowledge of the Structural Engineering discipline, with an ability to evaluate, analyze and synthesize existing and new knowledge in structural design.
PSO2	Critical analysis of Structural Engineering issues and innovation	Critically analyze complex Structural Engineering problems, apply independent judgment for synthesizing information and make innovative advances in a theoretical, practical and policy context.
PSO3	Conceptualization and evaluation of Engineering solutions to Structural Design issues	Conceptualize and solve Structural Engineering problems, evaluate potential solutions and arrive at technically feasible, economically viable and environmentally sound solutions with due consideration of health, safety, and socio-cultural factors

4. PEO/PO Mapping:

PEO		РО		PSO				
120	PO1	PO2	PO3	PSO1	PSO2	PSO3		
I.	-	2	3	3	3	3		
II.	1	3	3	3	2	1		
III.	3	3	2	2	3	3		
IV.	1	1	-	-	1	3		
V.	2	-	1	1	3	-		

(3-High, 2- Medium, 1- Low)

		COURSE NAME	P01	PO2	PO3	PSO1	PSO2	PSO3
		Advanced Mathematical Methods	-	-	-	-	-	-
	_	Theory of Elasticity and Plasticity	3	2.4	2.4	3	2.4	2.2
	Ř	Structural Dynamics and Earthquake Engineering	3	2.20	2.25	3	2.75	1.80
	Ë	Professional Elective I	-	-	-	-	-	-
	SEMESTER	Research Methodology and IPR	-	-	-	-	-	-
	Σ	Audit Course I	-	-	-	-	-	-
- K	S	Advanced Construction Engineering and Experimental Techniques Laboratory	2.8	0.8	1.4	2.6	1.8	2
YEAR		Technical Seminar	2.6	1.2	1.8	2.8	1.2	2.2
Ϋ́Ε		Advanced Steel Structures	3	2.2	2.4	3	2.6	2.6
	=	Advanced Concrete Structures	3	2	2	2.6	2.4	2
	SEMESTER	Finite Element Analysis in Structural Engineering	3	2.4	2.75	2	2.6	2
		Professional Elective II	-	-	-	-	-	-
	Ϊ	Professional Elective III	_	-	-	-	-	-
	Ĕ	Audit Course II		-	-	-	-	-
	0)	Numerical and Finite Element Analysis Laboratory	3	1.8	2.6	2.4	3	2.6
		Structural Design Studio Laboratory	2.8	1.4	2.2	2.6	2.4	2.2
	≡	Professional Elective IV	0 - L	-	-	-	-	-
	R	Professional Elective V	1.0		-	-	-	-
	Ĵ	Open Elective Practical Training (4 weeks)	- 2.8	- 1.2	- 1.8	- 2.4	- 2.2	- 2.4
	Ш		2.0	1.2	1.0	2.4	2.2	2.4
=	SEMESTER	Project Work I	2.4	1.2	2	2.2	1.8	1.8
YEAR II	SEMESTER IV	Project Work II	2	2.6	2.4	2	2	1.6

MAPPING OF COURSE OUTCOMES AND PROGRAMME OUTCOMES

PROGRESS THROUGH KNOWLEDGE

PROFESSIONAL ELECTIVE COURSES [PEC]

S. NO.	COURSE TITLE	PO1	PO2	PO3	PSO1	PSO2	PSO3
1.	Non-linear Analysis of Structures	2	2.20	3	2	2.20	1.60
2.	Structural Stability	3	2	3	2.60	2	2.20
3.	Wind and Cyclone Effect on Structures	3	1.75	3	2	1.80	2.20
4.	Prefabricated Structures	2.60	1.60	2.60	2.80	2.60	2.60
5.	Advanced Concrete Technology	3	1.50	1.33	2.40	1.50	1.80
6.	Advanced Prestressed Concrete	2.4	1.80	2.40	1.80	2	1.80
7.	Reliability Analysis of Structures	2.40	1.75	1.75	1.60	2.20	2.20
8.	Design of Formwork	2.80	1.67	2.33	2	3	2
9	Maintenance, Repair and Rehabilitation of Structures	3	1.33	1.67	2.40	2.20	1.40
10.	Mechanics of Fiber Reinforced Polymer Composite Materials	2.8	2.33	1.75	2.20	2.20	1.80
11.	Design of Steel-Concrete Composite Structures	2.60	2	1.67	2.40	2	1.40
12.	Design of Masonry Structures	3	2	2	2.60	2	2.40
13.	Design of Industrial Structures	3	2	2	2.60	2.60	2.60
14.	Advanced Design of Foundation Structures	3	2.2	2	2.60	2.60	2.20
15.	Optimization of Structures	3	2.50	2.20	2.40	2.40	2.20
16.	Structural Health Monitoring	2.40	2	3	2.40	2	2
17.	Design of Offshore Structures	3	1.75	2	2.60	1.60	1.60
18.	Performance of Structures with Soil-Structure Interaction	3	2	2.50	2.60	2.40	2.40
19.	Design of Bridge Structures	3	2	2	2.20	2.60	2.60
20.	Design of Shell and Spatial Structures	2.60	2.25	2.33	2.20	2.20	2

PROGRESS THROUGH KNOWLEDGE

ANNA UNIVERSITY, CHENNAI NON-AUTONOMOUS AFFILIATED COLLEGES M. E. STRUCTURAL ENGINEERING REGULATIONS 2021 CHOICE BASED CREDIT SYSTEM I TO IV SEMESTERS CURRICULA AND SYLLABUS SEMESTER I

S. NO.	COURSE	COURSE TITLE	CATE- GORY		erio R W	-	TOTAL CONTACT	CREDITS
	0002		CON	L	Т	Р	PERIODS	
THEC	DRY							
1.	MA4153	Advanced Mathematical Methods	FC	4	0	0	4	4
2.	ST4101	Theory of Elasticity and Plasticity	PCC	3	1	0	4	4
3.	ST4102	Structural Dynamics and Earthquake Engineering	PCC	3	1	0	4	4
4.	RM4151	Research Methodology and IPR	RMC	2	0	0	2	2
5.		Professional Elective I	PEC	3	0	0	3	3
6.		Audit Course I*	AC	2	0	0	2	0
PRAG	CTICALS	2			1	A		
7.	ST4161	Advanced Construction Engineering and Experimental Techniques Laboratory	PCC	0	0	4	4	2
8.	ST4111	Technical Seminar	EEC	0	0	2	2	1
			TOTAL	17	2	6	25	20

* Audit Course is optional

SEMESTER II

	0011005		0.175	PE	RIOE	S	TOTAL	
S.	COURSE	COURSE TITLE	CATE-	PEF	R WE	EK	CONTACT	CREDITS
NO.	CODE		GORY	L	Т	Р	PERIODS	
THEC	DRY	PROGRESS THR	OUGH	KHC		ED	38	
1.	ST4201	Advanced Steel Structures	PCC	3	1	0	4	4
2.	ST4202	Advanced Concrete Structures	PCC	3	1	0	4	4
3.	ST4203	Finite Element Analysis in Structural Engineering	PCC	3	0	0	3	3
4.		Professional Elective II	PEC	3	0	0	3	3
5.		Professional Elective III	PEC	3	0	0	3	3
6.		Audit Course II*	AC	2	0	0	2	0
PRAC	CTICALS							
7.	ST4211	Numerical and Finite Element Analysis Laboratory	PCC	0	0	4	4	2
8.	ST4212	Structural Design Studio	PCC	0	0	4	4	2
			TOTAL	17	2	8	27	21

* Audit Course is optional

SEMESTER III

S. NO.	COURSE CODE	COURSE TITLE	CATE- GORY	PERIODS PER WEEK			TOTAL CONTACT	CREDITS		
NO.	CODE		GONT	L	Т	Ρ	PERIODS			
THEO	THEORY									
1.		Professional Elective IV	PEC	3	0	0	3	3		
2.		Professional Elective V	PEC	3	0	0	3	3		
3.		Open Elective	OEC	3	0	0	3	3		
PRAC	TICALS									
4.	ST4311	Practical Training (4 Weeks)	EEC	0	0	0	0	2		
5.	ST4312	Project Work I	EEC	0	0	12	12	6		
	•		TOTAL	9	0	12	21	17		

SEMESTER IV

S. COURSE NO. CODE		COURSE TITLE	CATE- GORY	PERIODS PER WEEK			TOTAL CONTACT	CREDITS		
NO.	OODL	1 118	UONI	L.	т	Ρ	PERIODS			
PRAC	PRACTICALS									
1.	ST4411	Project Work II	EEC	0	0	24	24	12		
		5	TOTAL	0	0	24	24	12		

TOTAL NO. OF CREDITS: 70

FOUNDATION COURSES (FC)

S.	COURSE	COURSE TITLE		ODS PER		CREDITS	SEMESTER	
NO	CODE	COORGE THEE	Lecture	Tutorial	Practical	OREDITO	SEMILSTER	
1.	MA4153	Advanced Mathematical Methods	4	0	0	4	1	

PROFESSIONAL CORE COURSES (PCC)

S.	COURSE	COURSE TITLE	PERI	ODS PER	WEEK	CREDITS	SEMESTER
NO	CODE	COOKSE IIIEE	Lecture	Tutorial	Practical	GREDITS	SEMESTER
1.	ST4101	Theory of Elasticity and Plasticity	3	KNOV	0	4	1
2.	ST4102	Structural Dynamics and Earthquake Engineering	3	1	0	4	1
3.	ST4161	Advanced Construction Engineering and Experimental Techniques Laboratory	0	0	4	2	1
4.	ST4201	Advanced Steel Structures	3	1	0	4	2
5.	ST4202	Advanced Concrete Structures	3	1	0	4	2
6.	ST4203	Finite Element Analysis in Structural Engineering	3	0	0	3	2
7.	ST4211	Numerical and Finite Element Analysis Laboratory	0	0	4	2	2
8.	ST4212	Structural Design Studio	0	0	4	2	2
		CREDITS	25				

LIST OF PROFESSIONAL ELECTIVE COURSES [PEC]

SEMESTER I, ELECTIVE I

S. NO.	COURSE COURSE TITLE		CATE- GORY	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
	OODL		CONT	L	Т	Р	PERIODS	
1.	ST4001	Non-linear Analysis of Structures	PEC	3	0	0	3	3
2.	ST4002	Structural Stability	PEC	3	0	0	3	3
3.	ST4003	Wind and Cyclone Effects on Structures	PEC	3	0	0	3	3
4.	ST4004	Prefabricated Structures	PEC	3	0	0	3	3

SEMESTER II, ELECTIVE II

S. NO.	COURSE	COURSE TITLE	CATE- GORY		RIO R WE		TOTAL CONTACT	CREDITS
NO.	CODE		GONT	L.	Т	Ρ	PERIODS	
1.	CN4071	Advanced Concrete	PEC	3	0	0	3	3
2.	ST4071	Advanced Prestressed Concrete	PEC	3	0	0	3	3
3.	ST4005	Reliability Analysis of Structures	PEC	3	0	0	3	3
4.	ST4006	Design of Formwork	PEC	3	0	0	3	3

SEMESTER II, ELECTIVE III

S. NO.	COURSE	COURSE TITLE	CATE-	GORY PER WEEK		TOTAL CONTACT	CREDITS	
NO.	CODL		GOILI	L	Т	Ρ	PERIODS	
1.	ST4073	Maintenance, Repair and Rehabilitation of Structures	PEC	3	0	0	3	3
2.	ST4007	Mechanics of Fiber Reinforced Polymer Composite Materials	PEC	3	0	0	3	3
3.	ST4008	Design of Steel-Concrete Composite Structures	PEC	3	0	0	3 B	3
4.	ST4009	Design of Masonry Structures	PEC	3	0	0	3	3

SEMESTER III, ELECTIVE IV

S. NO.	COURSE	COURSE TITLE	CATE- GORY		rio R We	-	TOTAL CONTACT	CREDITS
NO.	CODE		GORT	L	Т	Ρ	PERIODS	
1.	ST4010	Design of Industrial Structures	PEC	3	0	0	3	3
2.	ST4011	Advanced Design of	PEC	3	0	0	3	3
		Foundation Structures		-	_	-		_
3.	ST4012	Optimization of Structures	PEC	З	0	0	3	3
4.	ST4013	Structural Health Monitoring	PEC	3	0	0	3	3

SEMESTER III, ELCTIVE V

S. NO.	COURSE	COURSE TITLE	CATE- GORY		TOTAL CONTACT	CREDITS		
	OODL		CONT	L	Т	Ρ	PERIODS	
1.	ST4014	Design of Offshore Structures	PEC	3	0	0	3	3
2.	ST4015	Performance of Structures with Soil-Structure Interaction	PEC	3	0	0	3	3
3.	ST4091	Design of Bridge Structures	PEC	3	0	0	3	3
4.	ST4016	Design of Shell and Spatial Structures	PEC	3	0	0	3	3

RESEARCH METHODOLOGY AND IPR COURSES (RMC)

S.	COURSE		PERIC	DS PER		CREDITS	
NO	CODE	COURSE TITLE	Lecture	Tutorial	Practical		SEMESTER
1.	RM4151	Research Methodology and IPR	2	0	0	2	1
		1.10	4IV	TOTAL	CREDITS	2	
		- 10-		SA?			

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

S.	COURSE	COURSE TITLE	PERIC	DDS PER	WEEK	CREDITS	SEMESTER
NO	CODE		Lecture	Tutorial	Practical	CREDITS	SEIVIESTER
1.	ST4111	Technical Seminar	0	0	2	1	1
2.	ST4311	Practical Training	0	0	0	2	3
		(4 Weeks)		Ŭ	0	-	Ũ
3.	ST4312	Project Work I	0	0	12	6	3
4.	ST4411	Project Work II	0	0	24	12	4
				TOTAL (CREDITS	21	

AUDIT COURSES (AC)

Registration for any of these courses is optional for students

SL.	COURSE TIT		PERIO	DS PER	WEEK	CREDITS	SEMESTER
NO	CODE		Lecture	Tutorial	Practical		
1.	AX4091	English for Research Paper Writing	2	0	0	0	
2.	AX4092	Disaster Management	2	0	0	0	1/2
3.	AX4093	Constitution of India	2	0	0	0	
4.	AX4094	நற்றமிழ் இலக்கியம்	2	0	0	0	

SUMMARY

	Name of the Programme: M.E STRUCTURAL ENGINEERING								
SI. No.	SUBJECT AREA	CRE	CREDITS TOTAL						
		I	II	111	IV				
1.	FC	04	00	00	00	04			
2.	PCC	10	15	00	00	25			
3.	PEC	03	06	06	00	15			
4.	RMC	02	00	00	00	02			
5.	OEC	00	00	03	00	03			
6.	EEC	01	00	08	12	21			
7.	Non Credit/Audit Course	~	~	00	00				
8.	TOTAL CREDIT	20	21	17	12	70			

PROGRESS THROUGH KNOWLEDGE

ADVANCED MATHEMATICAL METHODS

OBJECTIVES:

MA4153

• To provide the student with a repertoire of mathematical methods that are essential to the solution of advanced problems encountered in the fields of applied physics and engineering. This course covers a broad spectrum of mathematical techniques such as Laplace Transform, Fourier Transform, Calculus of Variations, Conformal Mapping and Tensor Analysis. The application of these topics to the solution of problems in physics and engineering is stressed.

UNIT I LAPLACE TRANSFORM TECHNIQUES FOR PARTIAL DIFFERENTIAL EQUATIONS

Laplace transform - Definitions – Properties – Transform error function – Bessel's function - Dirac delta function – Unit step functions – Convolution theorem – Inverse Laplace transform - Complex inversion formula – Solutions to partial differential equations - Heat equation – Wave equation.

UNIT II FOURIER TRANSFORM TECHNIQUES FOR PARTIAL DIFFERENTIAL EQUATIONS

Fourier transform - Definitions – Properties – Transform of elementary functions – Dirac delta function – Convolution theorem – Parseval's identity – Solutions to partial differential equations - Heat equation – Wave equation – Laplace and Poisson's equations.

UNIT III CALCULUS OF VARIATIONS

Concept of variation and its properties – Euler's equation – Functional dependent on first and higher order derivatives – Functionals dependent on functions of several independent variables – Variational problems with moving boundaries – Isoperimetric problems – Direct methods – Ritz and Kantorovich methods.

UNIT IV CONFORMAL MAPPING AND APPLICATIONS

Introduction to conformal mappings and bilinear transformations – Schwarz Christoffel transformation – Transformation of boundaries in parametric form – Physical applications - Fluid flow and heat flow problems.

UNIT V TENSOR ANALYSIS

Summation convention – Contravariant and covariant vectors – Contraction of tensors – Inner product – Quotient law – Metric tensor – Christoffel symbols – Covariant differentiation – Gradient - Divergence and curl.

OUTCOMES:

After completing this course, students should demonstrate competency in the following skills:

CO1	Application of Laplace and Fourier transforms to the initial value, initial-boundary value and boundary value problems in Partial Differential Equations.
CO2	Maximizing and minimizing the functions that occur in various branches of Engineering Disciplines.
CO3	Construct conformal mappings between various domains and use conformal mapping in studying problems in physics and engineering, particularly fluid flow and heat flow problems.
CO4	Understand tensor algebra and its applications in applied sciences and engineering and develops the ability to solve mathematical problems involving tensors.
CO5	Competently use tensor analysis as a tool in the field of applied sciences and related fields.

12

12

12

12

REFERENCES:

- Andrews L.C. and Shivamoggi, B., "Integral Transforms for Engineers", Prentice Hall of 1. India Pvt. Ltd., New Delhi, 2003.
- Elsgolc, L.D., "Calculus of Variations", Dover Publications Inc., New York, 2007. 2.
- Mathews, J. H., and Howell, R.W., "Complex Analysis for Mathematics and Engineering", 3. 6th Edition, Jones and Bartlett Publishers, 2011.
- Kay, D. C., "Tensor Calculus", Schaum's Outline Series, Tata McGraw Hill Edition, 2014. 4.
- Naveen Kumar, "An Elementary Course on Variational Problems in Calculus ", Narosa 5. Publishing House, 2005.
- 6. Saff, E.B and Snider, A.D, "Fundamentals of Complex Analysis with Applications in Science and Mathematics", 3rd Edition, Pearson Education, Enaineerina. New Delhi, 2014.
- 7. Sankara Rao, K., "Introduction to Partial Differential Equations", 3rd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2010.
- Spiegel, M.R., "Theory and Problems of Complex Variables and its Applications", Schaum's 8. Outline Series, McGraw Hill Book Co., 1981.
- 9. Ramaniah. G. "Tensor Analysis", S. Viswanathan Pvt. Ltd., 1990.

THEORY OF ELASTICITY AND PLASTICITY ST4101

OBJECTIVE:

To develop the ability to use the principles of theory of elasticity in engineering problems and to introduce theoretical fundamentals of theory of plasticity

UNIT I ELASTICITY

Analysis of stress and strain, Equilibrium Equations - Compatibility Equations - Stress Strain Relationship. Generalized Hooke's law-Constitutive Equations

UNIT II 2D STRESS STRAIN PROBLEMS

Plane stress and plane strain - Simple two-dimensional problems in Cartesian and Polar Coordinates.

UNIT III TORSION OF NON-CIRCULAR SECTION

St. Venant's approach - Prandtl's approach - Membrane analogy - Torsion of Thin Walled- Open and Closed sections-Design approach to open web section subjected to torsion - Finite Difference Method

BEAMS ON ELASTIC FOUNDATIONS UNIT IV

Beams on Elastic foundation - Methods of analysis - Elastic line method - Idealization of soil medium - Winkler model - Infinite beams - Semi-infinite and finite beams - Rigid and flexible -Uniform Cross Section – Point load and UDL – Solution by Finite Differences.

UNIT V PLASTICITY

Physical Assumptions – Yield Criteria – Failure Theories –Thick Cylinder – Plastic Stress Strain Relationship - Bending and Torsion in Elasto-Plastic Materials -Strain hardening Materials

TOTAL: 60 PERIODS

OUTCOMES:

On completion of this course, the student is expected to be able to

CO1	Derive and write the fundamental equations of elasticity describing the linear behavior of elements and develop constitutive models based on material behavior
CO2	Demonstrate the application of plane stress and plane strain in a given situation in both cartesian and polar coordinate systems

LTPC 3 1

0 4

12

12

12

12

CO3	Solve torsion problems in circular and non-circular cross-sections						
CO4	Analyse beams resting on elastic foundations						
CO5	Solve analytically the simple boundary value problems with elasto-plastic and strain						
	hardening properties						

REFERENCES:

- 1. Ansel.C.Ugural and Saul.K.Fenster, "Advanced Strength and Applied Elasticity," Fourth Edition, Prentice Hall Professional Technical Reference, New Jersey, 2003.
- 2. Chakrabarty. J, "Theory of Plasticity", Third Edition, Elsevier Butterworth Heinmann UK, 2007.
- 3. Jane Helena H, "Theory of Elasticity and Plasticity", PHI, New Delhi 2017.
- 4. Slater R.A.C, "Engineering Plasticity", John Wiley and Son, New York, 1977.
- 5. Timoshenko, S. and GoodierJ.N " Theory of Elasticity", Third Edition, McGraw Hill Book Co., New York, 2017.

<u> </u>		PO				
СО	1	2	3	1	2	3
1	3	2	2	3	2	3
2	3	3	3	3	3	2
3	3	2	3	3	2	2
4	3	2	2	3	2	2
5	3	3	2	3	3	2
Avg	3	2.4	2.4	3	2.4	2.2

CO-PO-PSO MAPPING

ST4102 STRUCTURAL DYNAMICS AND EARTHQUAKE ENGINEERING L T P C

OBJECTIVE:

• To make the students understand the basics of structural dynamics and earthquake engineering and to develop the ability to design an earthquake resistant structure,

3 1

0 4

12

12

12

UNIT I PRINCIPLES OF VIBRATION ANALYSIS

Mathematical models of single degree of freedom systems - Free and forced vibration of SDOF systems, Response of SDOF to special forms of excitation, Effect of damping, Evaluation of damping, Transmissibility, vibration control, Tuned mass damper.

UNIT II DYNAMIC RESPONSE OF MULTI-DEGREE OF FREEDOM SYSTEMS

Mathematical models of two-degree of freedom systems and multi-degree of freedom systems, free and forced vibrations of two-degree and multi-degree of freedom systems, normal modes of vibration, applications. orthogonality of normal modes, free and forced vibrations of multi-degree of freedom systems, Mode superposition technique, Applications.

UNIT III DYNAMIC RESPONSE OF CONTINUOUS SYSTEMS

Mathematical models of continuous systems, Free and forced vibration of continuous systems, Rayleigh-Ritz method – Formulation using Conservation of Energy – Formulation using Virtual Work, Applications. Damping in MDOF systems, Nonlinear MDOF systems, and step-by-step numerical integration algorithms.

UNIT IV EARTHQUAKE GROUND MOTION AND ITS EFFECTS ON STRUCTURES 12

Engineering Seismology Seismotectonics and Seismic Zoning of India, Earthquake Monitoring and Seismic Instrumentation, Characteristics of Strong Earthquake Motion, Estimation of Earthquake Parameters, Microzonation. Effect of Earthquake on Different Types of Structures - Lessons Learnt from Past Earthquakes -Evaluation of Earthquake Forces as per codal provisions - Response Spectra, Design Spectra

UNIT V EARTHQUAKE RESISTANT DESIGN OF MASONRY AND RC STRUCTURES 12

Structural Systems - Types of Buildings - Causes of damage - Planning Considerations – effect of material of construction on the performance of structures - Philosophy and Principle of Earthquake Resistant Design - Guidelines for Earthquake Resistant Design - Earthquake Resistant Design of Masonry Buildings and R.C.C. Buildings. Design consideration - Rigid Frames – Shear walls - Lateral load analysis of structures- Capacity based Design and detailing

TOTAL: 60 PERIODS

OUTCOMES:

On completion of this course, the student is expected to be able to

CO1	Do vibration analysis of system/structures with a single degree of freedom and can explain the method of damping the systems				
CO2	Do the dynamic analysis of system/structures with Multi degrees of freedom under free				
	and forced vibration				
CO3	Derive a mathematical model of a continuous system and do a dynamic analysis under				
	free and forced vibration				
CO4	Explain the causes and effects of an earthquake				
CO5	Design masonry and RC structures for the earthquake forces as per their				
	commendations of IS codes of practice				

REFERENCES:

- 1. Anil K.Chopra, Dynamics of Structures, Fifth edition, Pearson Education, 2020.
- 2. Leonard Meirovitch, Elements of Vibration Analysis, McGraw Hill, 2014.
- 3. Mario Paz, Structural Dynamics -Theory and Computation, Kluwer Academic Publishers, Fifth Edition, 2006.
- 4. Roy R.Craig, Jr, Andrew J. Kurdila, Fundamentals of Structural Dynamics, John Wiley & Sons, 2011.
- 5. Brebbia C. A.," Earthquake Resistant Engineering Structures VIII", WIT Press, 2015
- 6. Mohiuddin Ali Khan "Earthquake-Resistant Structures: Design, Build and Retrofit", Elsevier Science& Technology, 2013
- 7. Pankaj Agarwal and Manish Shrikhande, "Earthquake Resistant Design of Structures", Prentice Hall of India, 2014.
- 8. Paulay.T and Priestley M.J.N., "Seismic Design of Reinforced Concrete and MasonryBuildings", John Wiley and Sons, 2013.
- 9. Duggal S K, "Earthquake Resistant Design of Structures", Oxford University Press, 2013.
- 10. Madhujit Mukhopadhyay," Structural Dynamics: Vibrations and Systems", Ane's Student Edition,2017

	PO					
CO	1	2	3	1	2	3
1	3	3	3	3	3	2
2	3	2	3	3	2	2
3	3	2	2	3	3	2
4	3	1	-	3	-	1
5	3	3	1	3	3	2
Avg	3	2.20	2.25	3	2.75	1.80

CO-PO-PSO MAPPING

UNIT I RESEARCH DESIGN

RM4151

Overview of the research process and design, Use of Secondary and exploratory data to answer the research question, Qualitative research, Observation studies, Experiments and Surveys.

UNIT II DATA COLLECTION AND SOURCES

Measurements, Measurement Scales, Questionnaires and Instruments, Sampling and methods. Data - Preparing, Exploring, examining and displaying.

UNIT III DATA ANALYSIS AND REPORTING

Overview of Multivariate analysis, Hypotheses testing and Measures of Association. Presenting Insights and findings using written reports and oral presentations.

UNIT IV INTELLECTUAL PROPERTY RIGHTS

Intellectual Property – The concept of IPR, Evolution and development of the concept of IPR, IPR development process, Trade secrets, utility Models, IPR & Bio diversity, Role of WIPO and WTO in IPR establishments, Right of Property, Common rules of IPR practices, Types and Features of IPR Agreement, Trademark, Functions of UNESCO in IPR maintenance.

UNIT V PATENTS

Patents – objectives and benefits of patent, Concept, features of patent, Inventive step, Specification, Types of patent application, process E-filling, Examination of patent, Grant of patent, Revocation, Equitable Assignments, Licences, Licensing of related patents, patent agents, Registration of patent agents.

REFERENCES

- 1. Cooper Donald R, Schindler Pamela S and Sharma JK, "Business Research Methods", Tata McGraw Hill Education, 12e (2018).
- 2. Catherine J. Holland, "Intellectual property: Patents, Trademarks, Copyrights, Trade Secrets", Entrepreneur Press, 2007.
- 3. David Hunt, Long Nguyen, Matthew Rodgers, "Patent searching: tools & techniques", Wiley, 2012.
- 4. The Institute of Company Secretaries of India, Statutory body under an Act of parliament, "Professional Programme Intellectual Property Rights, Law and practice", December 2018.

ADVANCED CONSTRUCTION ENGINEERING AND EXPERIMENTAL

TECHNIQUES LABORATORY

A) ADVANCED CONSTRUCTION ENGINEERING LABORATORY

OBJECTIVE:

ST4161

 To provide a thorough knowledge of material selection through the material testing based on specification

LIST OF EXPERIMENTS

- 1. Mix design of concrete as per IS, ACI & BS methods for high performance concrete.
- 2. Flow Characteristics of Self Compacting concrete.
- 3. Effect of minerals and chemical admixtures in concrete at fresh and hardened state with relevance to workability, strength and durability.
- 4. NDT on hardened concrete UPV, Rebound hammer and core test.
- 5. Permeability test on hardened concrete (RCPT) Demonstration

TOTAL: 30 PERIODS

6

L T P C 2 0 0 2

6

6

6

TOTAL:30 PERIODS

L T P C 0 0 4 2

OUTCOMES:

On completion of the course, the student will be able to

CO1	Do the mix proportion using IS and ACI codal provisions.
CO2	Test the concrete in a non-destructive manner using rebound hammer.
CO3	Know the permeability characteristics of concrete.
CO4	Observe the effect of mineral and chemical admixture in concrete.
CO5	Study the flow characteristics of self-compacting concrete

B) EXPERIMENTAL TECHNIQUES LABORATORY

OBJECTIVE:

- To provide a detailed account of modern experimental techniques in construction Engineering research.
- To introduce the basic working principles, the operational know-how, and the strength and limitations of the techniques.

LIST OF EXPERIMENTS

- 1. Determination of elastic constants Hyperbolic fringes
- 2. Determination of elastic constants Elliptical fringes
- 3. Strain gauge meter Determination of Young's modulus of a metallic wire
- 4. Ultrasonic interferometer ultrasonic velocity in liquids
- 5. Electrical conductivity of metals and alloys with temperature-four probe method
- 6. Resistivity measurements
- 7. NDT Ultrasonic flaw detector
- 8. Calibration of Proving Ring and LVDT

TOTAL: 30 PERIODS

OUTCOMES:

• On completion of the course, the student is expected to be able to

CO1	Gain practical knowledge by applying the experimental methods to correlate with the theory
CO2	Learn the usage of electrical and optical systems for various measurements.
CO3	Apply the analytical techniques and graphical analysis to interpret the experimental data
CO4	Gain practical knowledge of non-destructive testing
CO5	Learn to calibrate and use proving rings and LVDTs

CO – PO - PSO Mapping

со		PO			PSO		
0	1	2	3	1	2	3	
1	3	2	2	3	3	3	
2	3	1	-	2	1	1	
3	2	-	2	3	2	3	
4	3	1	2	3	2	2	
5	3	-	1	2	1	1	
Avg	2.8	0.8	1.4	2.6	1.8	2	

TECHNICAL SEMINAR

L T P C 0 0 2 1

OBJECTIVE:

• To work on a specific technical topic in Structural Engineering in order to acquire the skills of oral presentation and to acquire technical writing abilities for seminars and conferences.

SYLLABUS: The students will work for two hours per week guided by a group of staff members. They will be asked to talk on any topic of their choice related to Structural Engineering and to engage in dialogue with the audience. A brief copy of their talk also should be submitted. Similarly, the students will have to present a seminar of not less than fifteen minutes and not more than thirty minutes on the technical topic. They will also answer the queries on the topic. The students as the audience also should interact. Evaluation will be based on the technical presentation and the report and also on the interaction during the seminar.

TOTAL: 30 PERIODS

OUTCOMES:

• On completion of the course, the student is expected to be able to

CO1	Identify the latest developments in the field of Structural Engineering
CO2	Acquire technical writing abilities for seminars, conferences and journal
	publications
CO3	Use modern tools to present the technical details
CO4	Conduct brainstorming sessions on technical concepts
CO5	Gain insight on upcoming trends in Structural Engineering

CO-PO-PSO MAPPING

<u> </u>		PO		PSO		
СО	1	2	3	1	2	3
1	3	2	2	3	1	1
2	3	1	Se - 24	3	-	3
3	2	1.1	2	2	1	2
4	2	1	3	3	3	3
5	3	2	2	3	1	2
Avg	2.6	1.2	1.8	2.8	1.2	2.2

PROGRESS THROUGH KNOWLEDGE

ST4201

ADVANCED STEEL STRUCTURES

L T P C 3 1 0 4

12

OBJECTIVE:

• To study the behaviour of members, connections and industrial buildings

UNIT I GENERAL

Design Philosophies and Design Codes (IS, EC, AISC) – Stability Criteria –Beam- Columns and Frames (Sway and Non-Sway) – Design of members subjected to combined forces – Design of Purlins, Louver rails, Gable column and Gable wind girder.

UNIT II DESIGN OF CONNECTIONS

Types of connections – Welded and Bolted – Design of simple base, Gusseted base and Moment Resisting Base – Flexible Connections - Seated Connections – Unstiffened and Stiffened Seated Connections – Moment Resistant Connections– Clip angle Connections – Split beam Connections.

UNIT III ANALYSIS AND DESIGN OF INDUSTRIAL BUILDINGS

Structural Configurations - Functional and Serviceability Requirements- Analysis and design of different types of trusses – Analysis and design of industrial buildings – Sway and non-sway frames –Gantry Girders –Earthquake resistant design of steel buildings.

UNIT IV PLASTIC ANALYSIS OF STRUCTURES

Introduction, Shape factor - Moment redistribution - Beam, Sway, Joint and Gable mechanisms - Combined mechanisms– Analysis of portal frames, Effect of axial force and shear force on plastic moment capacity, Connection Requirements– Moment resisting connections - Design of Straight Corner Connections –Design of continuous beams.

UNIT V DESIGN OF LIGHT GAUGE STEEL STRUCTURES

Introduction to Direct Strength Method - Behaviour of Compression Elements - Effective width for load and deflection determination – Behaviour of Unstiffened and Stiffened Elements – Design of webs of beams – Flexural members – Lateral buckling of beams – Shear Lag – Flange Curling – Design of Compression Members – Wall Studs.

OUTCOMES:

• On completion of the course, the student is expected to be able to

CO1	Design the steel members such as purlins, gable wind girders subjected to combined
	forces
CO2	Explain and design different types of steel connections such as welded and bolted flexible
002	as well as moment resisting connections
CO3	Analyze and design industrial structures such as trusses and portal frames subjected to
003	wind and seismic forces
CO4	Explain the effect of axial force and shear force on steel structures and analyse continuous
004	beams and frames using plastic theory
CO5	Evaluate the behaviour and design of compression and flexural Cold-formed Steel
CO5	members

REFERENCES:

- 1. Lynn S. Beedle, Plastic Design of Steel Frames, John Wiley and Sons, 1997.
- 2. Narayanan.R.et.al., Teaching Resource on Structural steel Design, INSDAG, Ministry of Steel Publishing, 2000.
- 3. Subramanian. N, Design of Steel Structures, Oxford University Press, 2016.
- 4. Wie Wen Yu, Design of Cold-Formed Steel Structures, McGraw Hill Book Company, 2019
- 5. S.K. Duggal, Limit State Design of Steel Structures, McGraw Hill Book Company, 2017

12

12

12

TOTAL: 60 PERIODS

CO-PO-PSO MAPPING

СО	PO					
00	1	2	3	1	2	3
1	3	2	3	3	3	3
2	3	2	3	3	3	2
3	3	3	2	3	3	2
4	3	2	2	3	2	3
5	3	2	2	3	2	3
Avg	3	2.2	2.4	3	2.6	2.6

ST4202

ADVANCED CONCRETE STRUCTURES

LTPC 3104

OBJECTIVE:

To make the students familiar with the behaviour of RCC beams and columns and to design • special structural members with proper detailing

BEHAVIOUR AND DESIGN OF R.C. BEAMS UNIT I

Properties and behaviour of concrete and steel – Behaviour and design of R.C. beams in flexure, shear and torsion - modes of failure - calculations of deflections and crack width as per IS 456.

UNIT II **BEHAVIOUR AND DESIGN OF R.C. COLUMNS**

Behaviour of short and long columns - behaviour of short column under axial load with uniaxial and bi-axial moments - construction of Pu - Mu interaction curves - Design of slender columns -

UNIT III **DESIGN OF SPECIAL R.C. ELEMENTS**

Design of RC walls - design of corbels - strut and tie method - design of simply supported and continuous deep beams - analysis and design of grid floors.

UNIT IV FLAT SLABS AND YIELD LINE BASED DESIGN

Design of flat slabs according to IS method - Check for shear - Design of spandrel beams - Yield line theory and design of slabs - virtual work method - equilibrium method.

INELASTIC BEHAVIOUR OF CONCRETE STRUCTURES UNIT V

Inelastic behaviour of concrete beams - Moment-curvature curves - moment redistribution - Concept of Ductility - Detailing for ductility - Design of beams, columns for ductility - Design of cast-in-situ joints in frames.

TOTAL: 60 PERIODS

OUTCOMES:

On completion of the course, the student is expected to be able to

CO1	Explain the structural behaviour of flexural members and columns
CO2	Design the compression members and construct interaction diagrams
CO3	Design the special elements like corbels, deep beams and grid floors
CO4	Design flat slab and spandrel beams
CO5	Predict the moment curvature behavior and design and detail concrete elements
	based on ductility

12

12

12

12

REFERENCES:

- 1. Gambhir.M. L., "Design of Reinforced Concrete Structures", Prentice Hall of India. 2012.
- 2. Purushothaman, P, "Reinforced Concrete Structural Elements: Behaviour Analysis and Design", Tata McGraw Hill, 1986
- 3. Unnikrishna Pillai and Devdas Menon "Reinforced Concrete Design', Third Edition, Tata McGraw Hill Publishers Company Ltd., New Delhi, 2017.
- 4. Varghese, P.C. "Advanced Reinforced Concrete Design". Prentice Hall of India, 2020.
- 5. Sinha.S.N., Reinforced Concrete Design", Tata McGraw Hill publishing company Ltd.2017

CO-PO-PSO MAPPING

со		PO		PSO		
0	1	2	3	1	2	3
1	3	-	-	3	2	2
2	3	2	2	3	2	2
3	3	2	2	3	2	2
4	3	2	2	2	3	2
5	3	2	2	2	3	2
Avg	3	2	2	2.6	2.4	2

FINITE ELEMENT ANALYSIS IN STRUCTURAL ENGINEERING LTPC ST4203 3 0 0 3

OBJECTIVE:

To make the students understand the basics of the Finite Element Technique, and to cover • the analysis methodologies for 1-D, 2-D and 3-D Structural Engineering problems.

UNIT I INTRODUCTION

Introduction - Basic Concepts of Finite Element Analysis - Introduction to Elasticity- Steps in Finite Element Analysis - Finite Element Formulation Techniques - Virtual Work and Variational Principle -Galerkin Method - Finite Element Method: Displacement Approach - Stiffness Matrix and Boundary Conditions

UNIT II **ELEMENT PROPERTIES**

Natural Coordinates - Triangular Elements-Rectangular Elements - Lagrange and Serendipity Elements - Solid Elements - Isoparametric Formulation - Stiffness Matrix of Isoparametric Elements Numerical Integration: One, Two and Three Dimensional - Problems

UNIT III ANALYSIS OF FRAME STRUCTURES

Stiffness of Truss Members-Analysis of Truss-Stiffness of Beam Members-Finite Element Analysis of Continuous Beam-Plane Frame Analysis-Analysis of Grid and Space Frame

UNIT IV TWO AND THREE DIMENSIONAL SOLIDS

Constant Strain Triangle - Linear Strain Triangle - Rectangular Elements- Numerical Evaluation of Element Stiffness - Computation of Stresses, Geometric Nonlinearity and Static Condensation -Axisymmetric Element - Finite Element Formulation of Axisymmetric Element - Finite Element Formulation for 3 Dimensional Elements- Problems

UNIT V **APPLICATIONS OF FEM**

Introduction to Plate Bending Problems - Finite Element Analysis of Thin Plate - Finite Element Analysis of Thick Plate - Finite Element Analysis of Skew Plate -Introduction to Finite Strip Method -Finite Element Analysis of Shell -Finite Elements for Elastic Stability - Dynamic Analysis

TOTAL: 45 PERIODS

9

9

9

9

q

OUTCOMES:

• On completion of the course, the student is expected to be able to

CO1	Formulate a finite element problem using basic mathematical principles
CO2	
	modelling
CO3	Analyse a frame using truss element
CO4	Formulate and analyse the two- and three-dimensional solid finite element problems
CO5	Analyse shells, thick and thin plates and explain the dynamic analysis using FEM

REFERENCES:

- 1. David Hutton, "Fundamentals of Finite Element Analysis", Tata McGraw Hill Publishing Company Limited, New Delhi, 2017.
- 2. Logan D. L,A First Course in the Finite Element Method, Thomson- Engineering, 3rd edition, 2010.
- 3. Zienkiewicz, O.C. and Taylor, R.L., "The Finite Element Method", Seventh Edition, McGraw Hill, 2013.
- 4. Chandrupatla, R.T. and Belegundu, A.D., "Introduction to Finite Elements in Engineering", Fourth Edition, Prentice Hall of India, 2015.
- 5. Moaveni, S., "Finite Element Analysis Theory and Application with ANSYS", Prentice Hall Inc., 2020.

CO		PO	7		PSO	24
CO	1	2	3	1	2	3
1	3	2	3	2	2	2
2	3	3		2	2	2
3	3	2	3	2	3	2
4	3	2	3	2	3	2
5	3	3	2	2	3	2
Avg	3	2.4	2.75	2	2.6	2

CO-PO-PSO MAPPING

ST4211 NUMERICAL AND FINITE ELEMENT ANALYSIS LABORATORY LTPC

0 0 4 2

OBJECTIVE:

• To solve the mathematical equations and finite element analysis with computational methods like MATLAB and Finite element software using software like ANSYS, ABAQUS etc

EXPERIMENTS/ EXERCISES

- 1. Dynamic analysis of frame using mathematical computational software
- 2. Finite Element Analysis of 2D truss and 3D space trusses
- 3. Modelling and Finite Element Analysis of RC beams and slabs
- 4. Finite Element Analysis of thin and thick plates
- 5. Stability analysis using FEM

TOTAL: 60 PERIODS

OUTCOMES:

At the end of the course, the student will be able to carry out

CO1	Thorough knowledge to handle FE software
CO2	Dynamic analysis of frames
CO3	Analysis of thin and thick plates
CO4	Stability Analysis
CO5	Learn to use MATLAB and import MATLAB codes for FE modelling

CO-PO-PSO MAPPING

со		PO		F	PSO	
0	1	2	3	1	2	3
1	3	-	3	3	3	3
2	3	2	3	3	3	2
3	3	3	2	2	3	2
4	3	3	2	2	3	3
5	3	1	3	2	3	3
Avg	3	1.8	2.6	2.4	3	2.6

ST4212

STRUCTURAL DESIGN STUDIO

L T P C 0 0 4 2

OBJECTIVE:

• To design a structure using modern software tools available like ETABS, STAAD, STRAP, etc. and present it in the form of a complete detailed drawing. Students have to work individually with standard codes, computational tools and software packages for analyzing, designing and detailing a structure. A detailed report on the work done shall be submitted by individual students in the form of a report and presentation.

TOTAL: 60 PERIODS

OUTCOMES:

• On completion of the course, the student is expected to be able to

CO1	Understand the requirements of a structure and model it accordingly using computer software
CO2	Analyze the structure for various loads and load combinations according to the relevant IS codes
CO3	Design and detail structures using computer software/tools and check the correctness using manual approximate methods
CO4	Prepare the complete structural drawings using computer software
CO5	Observe the flow of forces in a structure and its response to it.

CO-PO-PSO MAPPING

00	PO					
СО	1	2	3	1	2	3
1	3	-	2	3	3	3
2	3	3	1	2	3	2
3	2	-	3	2	3	2
4	3	3	2	3	-	1
5	3	1	3	3	3	3
Avg	2.8	1.4	2.2	2.6	2.4	2.2

OBJECTIVE:

To train the students in the field work so as to have firsthand knowledge of practical problems related to Structural Engineering in carrying out engineering tasks.

SYLLABUS: The students individually undertake training in reputed engineering companies doing Structural Engineering during the summer vacation for a specified duration of four weeks. At the end of the training, a detailed report on the work done should be submitted within ten days from the commencement of the semester. The students will be evaluated through a viva-voce examination by a team of internal staff.

OUTCOMES:

On completion of the course, the student is expected to be able to

CO1	Describe the Structural Engineering organization
CO2	Realize the various functions of construction activities
CO3	Gain an understanding of groups and group dynamics
CO4	Participate in real-life construction projects
CO5	Put to use the theoretical knowledge gained so far
CO-PO	-PSO MAPPING

CO-PO-PSO MAPPING

СО		PO	57/		PSO	S. 7
	1	2	3	1	2	3
1	3	2	1	3	3	3
2	3	1.4	11-11	2	1	2
3	2	1	2	2	1	1
4	3	1	3	3	3	3
5	3	2	3	2	3	3
Avg	2.8	1.2	1.8	2.4	2.2	2.4

ST4312

PROJECT WORK I

LTPC 00126

OBJECTIVE:

- To identify a specific problem for the current need of the society and collect information • related to the same through a detailed review of literature.
- To develop the methodology to solve the identified problem.
- To train the students in preparing project reports and to face reviews and viva-voce examinations.

SYLLABUS:

The student individually works on a specific topic approved by the faculty member who is familiar with this area of interest. The student can select any topic which is relevant to his/her specialization of the programme. The topic may be experimental or analytical or case studies. At the end of the semester, a detailed report on the work done should be submitted which contains a clear definition of the identified problem, detailed literature review related to the area of work and a methodology for carrying out the work. The students will be evaluated through a viva-voce examination by a panel of examiners including one external examiner.

TOTAL: 180 PERIODS

ST4311

OUTCOMES:

• On completion of the course, the student will be able to

CO1	Apply the knowledge gained from theoretical and practical courses in solving problems
CO2	Recognize the importance of literature review
CO3	Develop a clear outline and methodology for the project
CO4	Identify the potential research gap and list parameters to work with
CO5	Report and present the findings of the work conducted.

CO-PO-PSO MAPPING

со		РО			PSO	
0	1	2	3	1	2	3
1	3	2	3	3	1	2
2	3	-	-	2	1	2
3	2	1	2	2	3	2
4	2	<u> </u>	2	2	2	2
5	2	3	3	2	2	1
Avg	2.4	1.2	2	2.2	1.8	1.8

ST4411

PROJECT WORK II

LTPC 002412

OBJECTIVES:

- To solve the identified problem based on the formulated methodology.
- To develop skills to analyze and discuss the test results, and make conclusions.

SYLLABUS:

The student should continue the phase I work on the selected topic as per the formulated methodology / Undergo internship. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report should be prepared and submitted to the head of the department. The students will be evaluated based on the report and the viva-voce examination by a panel of examiners including one external examiner.

TOTAL: 360 PERIODS

OUTCOMES:

On completion of the course, the student will be able to

CO1	Discover potential research areas in the field of Structural Engineering.
CO2	Apply the knowledge gained from theoretical and practical courses to be creative, well- planned, organized and coordinated
CO3	Represent data acquired in graphical and reader-friendly formats
CO4	Derive detailed conclusions from work carried out
CO5	Report and present the findings of the work conducted

CO-PO-PSO MAPPING

CO	PO		PO			I	
	1	2	3	1	2	3	
1	2	3	3	3	3	2	
2	2	1	3	3	2	1	
3	1	3	1	1	2	1	
4	2	3	2	1	2	2	
5	3	3	3	2	1	2	
Avg	2	2.6	2.4	2	2	1.6	

PROFESSIONAL ELECTIVE COURSES

ST4001 NON-LINEAR ANALYSIS OF STRUCTURES L T P C

3003

9

9

9

9

9

OBJECTIVE:

• To study the concept of non-linear behaviour and analysis of elements and simple structures.

UNIT I INTRODUCTION TO NON-LINEAR ANALYSIS

Material non-linearity, geometric non-linearity; statically determinate and statically indeterminate bar systems of uniform and variable thickness.

UNIT II INELASTIC ANALYSIS OF FLEXURAL MEMBERS

Inelastic analysis of uniform and variable thickness members subjected to geometric and material non-linearity; inelastic analysis of bars of uniform and variable stiffness members with and without axial Restraints

UNIT III VIBRATION THEORY AND ANALYSIS OF FLEXURAL MEMBERS

Vibration theory and analysis of flexural members; hysteretic models and analysis of uniform and variable stiffness members under cyclic loading

UNIT IV ELASTIC AND INELASTIC ANALYSIS OF PLATES

Elastic and inelastic analysis of uniform and variable thickness plates.

UNIT V NON-LINEAR VIBRATION AND INSTABILITY

Nonlinear vibration and Instabilities of elastically supported beams.

TOTAL: 45 PERIODS

OUTCOME:

• On completion of the course, the student is expected to be able to

CO1	Analyze the bar system considering the material and geometric nonlinearity
CO2	Perform inelastic analysis of flexural members
CO3	Perform vibration analysis of flexural members
CO4	Perform elastic and inelastic analysis of Plates
CO5	Perform nonlinear and instability analysis of elastically supported beams

REFERENCES:

- 1. Fertis, D.G, Non-linear Mechanics, CRC Press, 1999.
- 2. Reddy.J.N, Non-linear Finite Element Analysis, Oxford University Press, 2014.
- 3. Sathyamoorthy.M, Nonlinear Analysis of Structures, CRC Press, 2017.

CO-PO-PSO MAPPING

СО	РО					
0	1	2	3	1	2	3
1	2	3	-	2	2	2
2	2	2	3	2	3	1
3	2	2	3	2	2	1
4	2	2	3	2	2	2
5	2	2	3	2	2	2
Avg	2	2.20	3	2	2.2	1.60

ST4002

OBJECTIVE:

• To study the concept of buckling and analysis of structural elements

UNIT I BUCKLING OF COLUMNS

States of equilibrium - concept of equilibrium, energy, imperfection and vibration approaches to stability analysis. Governing equation for column buckling - critical load using Equilibrium, Energy methods - Approximate methods - Rayleigh Ritz, Galerkins approach - Numerical Techniques - Finite difference method.

STRUCTURAL STABILITY

UNIT II BUCKLING OF BEAM-COLUMNS AND FRAMES

Theory of beam column - Stability analysis of beam column with single and several concentrated loads, distributed load and end couples - Analysis of rigid jointed frames with and without sway – Use of stability function to determine the critical load.

UNIT III TORSIONAL AND LATERAL BUCKLING

Torsional buckling – Combined Torsional and flexural buckling - Local buckling - Buckling of Open Sections - Lateral buckling of beams - simply supported and cantilever beams.

UNIT IV BUCKLING OF PLATES

Governing differential equation - Buckling of thin plates with various edge conditions - Analysis by equilibrium and energy approach – Finite difference method.

UNIT V INELASTIC BUCKLING

Double modulus theory - Tangent modulus theory - Shanley's model - Eccentrically loaded inelastic column. Inelastic buckling of plates - Post buckling behaviour of plates.

OUTCOMES:

On completion of this course, the student is expected to be able to

C01	Explain the phenomenon of buckling of columns and calculate the buckling load on column by various approaches
CO2	Estimate the buckling load of beam – columns and frames
CO3	Explore the concepts of torsional and lateral buckling of thin walled members
CO4	Explain the phenomenon of buckling of plates
CO5	Analyze the inelastic buckling of columns and plates
	PHUGHESS INHUUGH KNUWLEUGE

REFERENCES:

- 1. Ashwini Kumar, "Stability Theory of Structures", Allied publishers Ltd., New Delhi, 2003.
- 2. Chajes, A. "Principles of Structures Stability Theory", Prentice Hall, 1974.
- 3. Gambhir.M.L, "Stability Analysis and Design of Structures", springer, New York, 2013.
- 4. Simitser.G.J and Hodges D.H, "Fundamentals of Structural Stability", Elsevier Ltd., 2006.
- 5. Timoshenko.S.P, and Gere.J.M, "Theory of Elastic Stability", Dover Publication, 2012.

CO-PO-PSO MAPPING

СО	PO			PSO		
	1	2	3	1	2	3
1	3	2	3	3	2	2
2	3	2	3	2	2	2
3	3	-	3	3	2	3
4	3	2	3	3	1	2
5	3	2	3	2	3	2
Avg	3	2	3	2.6	2	2.2

L T P C 3 0 0 3

9

9

9

9

9

TOTAL: 45 PERIODS

WIND AND CYCLONE EFFECTS ON STRUCTURES

OBJECTIVE:

ST4003

• To study the concept of wind and cyclone effects for the analysis and design of structures.

UNIT I INTRODUCTION

Introduction, Types of wind – Characteristics of wind – Method of Measurement of wind velocity, variation of wind speed with height, shape factor, aspect ratio, drag and lift effects - Dynamic nature of wind -Pressure and suctions - Spectral studies, Gust factor.

EFFECT OF WIND ON STRUCTURES UNIT II

Classification of structures - Rigid and Flexible - Effect of wind on structures - Vortex shedding, translational vibration of structures - Static and dynamic effects on Tall buildings - Chimneys

DESIGN OF SPECIAL STRUCTURES UNIT III

Design of Structures for wind loading - as per IS, ASCE and NBC code provisions - Design of Industrial Structures- Tall Buildings - Chimneys - Transmission towers and steel monopoles

UNIT IV CYCLONE EFFECTS

Cyclone effect on - low rise structures - sloped roof structures - Tall buildings. Effect of cyclone on claddings - design of cladding - use of code provisions in cladding design - Analytical procedure and modeling of cladding.

WIND TUNNEL STUDIES UNIT V

Wind Tunnel Studies, Types of wind tunnels, Types of wind tunnel models - Modelling requirements - Aero dynamic and Aero-elastic models, Prediction of acceleration - Load combination factors -Wind tunnel data analysis - Calculation of Period and damping value for wind design

OUTCOMES:

On completion of the course, the student is expected to be able to

On compic	
CO1	Explain the characteristics of wind
CO2	Evaluate the intensity of wind on structures
CO3	Design some special structures subjected to wind loading
CO4	Design of structures for cyclone
CO5	Model and analyse a structure in a wind tunnel

REFERENCES:

- Cook.N.J., "The Designer's Guide to Wind Loading of Building Structures", Butterworths, 1. 1990.
- Kolousek.V, Pirner.M, Fischer.O and Naprstek.J, "Wind Effects on Civil Engineering 2. Structures", Elsevier Publications, 1984
- 3. Lawson T.V., "Wind Effects on Building Vol. I and II", Applied Science Publishers, London.1980.
- Peter Sachs, "Wind Forces in Engineering", Pergamon Press, New York, 2014. 4.

CO-PO-PSO MAPPING

60	PO					
СО	1	2	3	1	2	3
1	3	1	-	2	1	2
2	3	-	3	2	1	2
3	3	2	3	2	2	3
4	3	2	3	2	2	2
5	3	2	3	2	3	2
Avg	3	1.75	3	2	1.80	2.2

9

TOTAL: 45 PERIODS

9

9

PREFABRICATED STRUCTURES

OBJECTIVE:

• To study the design principles, analysis and design of Prefabricated structures.

UNIT I DESIGN PRINCIPLES

General Civil Engineering requirements, specific requirements for planning and layout of prefabrication plant. IS Code specifications. Modular co-ordination, standardization, Disuniting of Prefabricates, production, transportation, erection, stages of loading and code provisions, safety factors, material properties, Deflection control.

UNIT II REINFORCED CONCRETE

Prefabricated structures - Long wall and cross-wall large panel buildings, one way and two way prefabricated slabs, Framed buildings with partial and curtain walls, -Connections – Beam to column and column to column.

UNIT III FLOORS, STAIRS AND ROOFS

Types of floor slabs, analysis and design example of cored and panel types and two-way systems, Design analysis for product manufacture, handling and erection, staircase slab, types of roof slabs and insulation requirements, Description of joints, their behaviour and reinforcement requirements, Deflection control for short term and long term loads, Ultimate strength calculations in shear and flexure.

UNIT IV WALLS

Types of wall panels, Blocks and large panels, Curtain, Partition and load bearing walls, Hoisting and placing, load transfer from floor to wall panels, vertical loads, Eccentricity and stability of wall panels, Design Curves, types of wall joints, their behaviour and design,Leak prevention, joint sealants, sandwich wall panels, Lateral load resistance, Location and types of shear walls, approximate design of shear walls.

UNIT V INDUSTRIAL BUILDINGS AND SHELL ROOFS

Components of single-storey industrial sheds with crane gantry systems, R.C. Roof Trusses, Roof Panels, corbels and columns, wind bracing. Cylindrical, Folded plate and paraboloid shells, Erection and jointing of components in industrial buildings.

TOTAL: 45 PERIODS

OUTCOMES:

• On completion of the course, the student is expected to be able to

CO1	Explain the design principles involved in prefabrication
CO2	Detail the different types of connection
CO3	Design for stripping forces during manufacture
CO4	Determine the forces in shear walls
CO5	Identify the different roof trusses used in industrial buildings

REFERENCES:

- 1. Hubert Bachmann and Alfred Steinle, Precast Concrete Structures, 2012.
- 2. Koncz.T. Manual of Precast Concrete Construction, Vol.I II and III & IV Bauverlag, GMBH, 1971.
- 3. Laszlo Mokk, Prefabricated Concrete for Industrial and Public Structures, AkademiaiKiado, Budapest, 2007.
- 4. Lewicki.B, Building with Large Prefabricates, Elsevier Publishing Company, 1988.
- 5. Structural Design manual, Precast concrete connection details, Society for studies in the use of Precast concrete, Netherland BetorVerlag, 2009.

ST4004

9

9

9

9

CO-PO-PSO MAPPING

	PO					
CO	1	2	3	1	2	3
1	3	1	2	2	2	2
2	3	2	2	3	2	3
3	3	2	3	3	3	3
4	2	1	3	3	3	3
5	2	2	3	3	3	2
Avg	2.6	1.60	2.60	2.80	2.60	2.60

CN4071

ADVANCED CONCRETE TECHNOLOGY

OBJECTIVE:

• To study the properties of concrete making materials, tests, mix design, special concretes, and various methods for making concrete.

UNIT I CONCRETE MAKING MATERIALS

Aggregates classification IS Specifications, Properties, Grading, Methods of combining aggregates, specified gradings, Testing of aggregates - Cement, Grade of cement, Chemical composition, Testing of concrete, Hydration of cement, Structure of hydrated cement, special cements - Water - Chemical admixtures, Mineral admixture.

UNIT II MIX DESIGN

Principles of concrete mix design, Methods of concrete mix design, IS Method, ACI Method, DOE Method – Mix design for special concretes- changes in Mix design for special materials.

UNIT III CONCRETING METHODS

Process of manufacturing of concrete, methods of transportation, placing and curing, cracking, plastic shrinkage, Extreme weather concreting, special concreting methods. Vacuum dewatering – Underwater Concrete

UNIT IV SPECIAL CONCRETES

Light weight concrete Fly ash concrete, Fiber reinforced concrete, Sulphur impregnated concrete, Polymer Concrete – High performance concrete. High performance fiber reinforced concrete, Self-Compacting Concrete, Geo Polymer Concrete, Waste material-based concrete – Ready mixed concrete.

UNIT V TESTS ON CONCRETE

Properties of fresh concrete, Hardened concrete, Strength, Elastic properties, Creep and shrinkage – Durability of concrete. Non-destructive Testing Techniques - microstructure of concrete

TOTAL: 45 PERIODS

OUTCOMES:

- On completion of the course, the student is expected to be able to
 - **CO1** Develop knowledge on various materials needed for concrete manufacture
 - **CO2** Apply the rules to do mix designs for concrete by various methods
 - CO3 Develop the methods of manufacturing of concrete.
 - **CO4** Explain about various special concrete
 - **CO5** Explain various tests on fresh and hardened concrete

9

L T P C 3 0 0 3

9

9

9

REFERENCES:

- Gupta.B.L., Amit Gupta, "Concrete Technology, Jain Book Agency, 2017. 1.
- Shetty M.S., Concrete Technology, S.Chand and Company Ltd. Delhi, 2019. 2.
- Gambhir.M.L., Concrete Technology, McGraw Hill Education, 2006. 3.
- 3. Neville, A.M., Properties of Concrete, Prentice Hall, 1995, London.
- Job Thomas., Concrete Technology, Cencage learning India Private Ltd, New Delhi, 2015. 4.

CO-PO MAPPING

	P01	PO2	PO3	PSO1	PSO2	PSO3
CO1	2	1	2	2	1	1
CO2	2	2	2	2	2	2
CO3	3	2	3	3	1	2
CO4	3	2	3	2	2	1
CO5	2	2	2	2	2	2

ST4071

ADVANCED PRESTRESSED CONCRETE

OBJECTIVE:

- To develop an understanding of the philosophy of design of prestressed concrete •
- To be able to design indeterminate prestressed concrete structure
- To design the prestressed concrete bridge and composite sections.

UNIT I INTRODUCTION

Concepts of Prestressing – Materials and methods of prestressing – Design philosophy- Analysis methods, Time-dependent deformation of concrete and losses of prestress.

DESIGN FOR FLEXURE, SHEAR AND TORSION UNIT II

Behaviour of flexural members, determination of ultimate flexural strength using various Codal provisions - Design for Flexure, Shear, torsion and bond of pre-stressed concrete elements -Transfer of prestress – Box girders - Camber, deflection and crack control.

DESIGN OF CONTINUOUS AND COMPOSITE BEAMS UNIT III

Statically indeterminate structures - Analysis and design of continuous beams and frames- Choice of cable profile - Methods of achieving continuity - concept of linear transformations, concordant cable profile and gap cables - Composite sections of prestressed concrete beam and cast in situ RC slab - Design of composite sections - Partial prestressing - Limit State design of partially prestressed concrete beams

UNIT IV DESIGN OF TENSION AND COMPRESSION MEMBERS

Pre-stressed concrete compression and tension members – application in the design of prestressed pipes and prestressed concrete cylindrical water tanks - Design of compression members with and without flexure - its application in the design of piles, flag masts and similar structures - Two way pre-stressed concrete floor systems – Connections for pre-stressed concrete elements

UNIT V **DESIGN OF PRESTRESSED CONCRETE BRIDGES**

Review of IRC and IRS loadings. Effect of concentrated loads on deck slabs, load distribution methods for concrete bridges. Analysis and Design of superstructures - Design of pre-stressed concrete bridges incorporating long-term effects like creep, shrinkage, relaxation, and temperature effects, Dynamic response of bridge decks.

TOTAL: 45 PERIODS

9

9

LTPC 3 0 0 3

q

9

OUTCOMES:

• On completion of the course, the student is expected to be able to

CO1	Identify the various methods of prestressing and estimate the loss
CO2	Design the beams for flexure, shear, bond and torsion
CO3	Design the continuous beams and composite beams
CO4	Design the water tank, piles and masts
CO5	Analyze and design the prestressed concrete bridge

REFERENCES:

- 1. Arthur H. Nilson, "Design of Prestressed Concrete", John Wiley and Sons Inc, New York, 2004.
- 2. Krishna Raju, "Prestressed Concrete", Tata McGraw Hill Publishing Co., New Delhi, 6th Edition, 2018.
- 3. Lin.T.Y.andBurns.H "Design of Prestressed Concrete Structures", John Wiley and Sons Inc, 3rd Edition, 2010.
- 4. Rajagopalan.N, "Prestressed Concrete", Narosa Publications, New Delhi, 2014.
- 5. Sinha.N.C.and.Roy.S.K, "Fundamentals of Prestressed Concrete", S.Chand and Co., 1998.
- 6. Johnson Victor, D., Essentials of Bridge Engineering, Oxford and IBH Publishing Co., New Delhi 2019

CO-PO MAPPING	
---------------	--

	PO					
CO	1	2	3	1	2	3
1	1	1	1	2	2	3
2	2	2	2	2	1	2
3	3	2	3	2	3	1
4	3	2	3	1	1	2
5	3	2	3	2	3	1
Avg	2.4	1.8	2.4	1.8	2	1.8

ST4005

RELIABILITY ANALYSIS OF STRUCTURES

LTPC 3003

OBJECTIVE:

• To develop knowledge to solve structural analysis problems using reliability concepts.

UNIT I DATA ANALYSIS

Graphical representation Histogram, frequency polygon, Measures of central tendency- grouped and ungrouped data, measures of dispersion, measures of asymmetry. Curve fitting and Correlation: Fitting a straight line, curve of the form $y = ab^x$, and parabola, Coefficient of correlation

UNIT II PROBABILITY CONCEPTS

Random events-Sample space and events, Venn diagram and event space, Measures of probabilityinterpretation, probability axioms, addition rule, multiplication rule, conditional probability, probability tree diagram, statistical independence, total probability theorem and Baye's theorem

UNIT III RANDOM VARIABLES

Probability mass function, probability density function, Mathematical expectation, Chebyshev's theorem. Probability distributions: Discrete distributions- Binomial and poison distributions, Continuous distributions, Normal, Log normal distributions

9

9

UNIT IV **RELIABILITY ANALYSIS**

Measures of reliability-factor of safety, safety margin, reliability index, performance function and limiting state. Reliability Methods-First Order Second Moment Method (FOSM). Point Estimate Method (PEM), and Advanced First Order Second Moment Method (Hasofer-Lind's method).

UNIT V SYSTEM RELIABILITY

Influence of correlation coefficient, redundant and non-redundant systems series, parallel and combined systems, Uncertainty in reliability assessments- Confidence limits, Bayesian revision of reliability. Simulation Techniques: Monte Carlo simulation- Statistical experiments, sample size and accuracy, Generation of random numbers, random numbers with standard uniform distribution, continuous random variables, discrete random variables

TOTAL: 45 PERIODS

OUTCOMES:

On completion of this course, the student is expected to be able to

CO1	Achieve the Knowledge of design and development of problem-solving skills.
CO2	Understand the principles of reliability.
CO3	Design and develop analytical skills.
CO4	Summarize the Probability distributions
CO5	Understands the concept of System reliability.

REFERENCES:

- 1. A Papoulis, Probability, Random Variables and Stochastic Processes, McGraw-Hill, New York. 2017.
- 2. R E Melchers, Structural Reliability Analysis and Prediction, Third Edition, John Wiley & Sons Ltd. Chichester, England, 2018.
- 3. O. Ditlevsen, H. O. Madsen, Structural Reliability Methods, Wiley, 1st Edition, 1996.
- 4. Srinivasan Chandrasekaran, Offshore Structural Engineering: Reliability and Risk Assessment, CRC Press, Florida, 2016.
- 5. Jack R Benjamin, C. Allin Cornell, Probability, Statistics, and Decision for Civil Engineers, Dover Publications, New York, 2014.

CO-PO-PSO MAPPING

		PO		PSO		
CO	1.0.0	2	3	1.	2	3
1	3	2	3	2	2	2
2	2	1	-	2	3	2
3	3	2	2	2	2	2
4	2	-	1	1	2	2
5	2	2	1	1	2	3
Avg	2.4	1.75	1.75	1.60	2.20	2.20

ST4006

DESIGN OF FORMWORK

LTPC 3 0 0 3

OBJECTIVE:

To study and understand the detailed planning of formwork, Design of forms for various elements such as foundation. slabs, beams, columns and walls,

UNIT I INTRODUCTION

General objectives of formwork building - Development of a Basic System - Key Areas of cost reduction - Requirements and Selection of Formwork.

9

UNITII FORMWORK MATERIALS AND TYPES

Timber, Plywood, Steel, Aluminium, Plastic, and Accessories. Horizontal and Vertical Formwork Supports. Flying Formwork, Table Form, Tunnel Form, Slip Form, Formwork for Precast Concrete,

UNIT III FORMWORK DESIGN

Concepts, Formwork Systems and Design for Foundations, Walls, Columns, Slab and Beams.

UNIT IV FORMWORK DESIGN FOR SPECIAL STRUCTURES

Shells, Domes, Folded Plates, Overhead Water Tanks, Natural Draft Cooling Tower, Bridges.

UNIT V FORMWORK FAILURES

Formwork Management Issues – Pre- and Post-Award. Formwork Failures: Causes and Case studies in Formwork Failure, Formwork Issues in Multi story Building Construction.

TOTAL: 45 PERIODS

OUTCOMES:

• On completion of the course, the student is expected to be able to

CO1	Select proper formwork, accessories and material
CO2	Design the form work for Beams, Slabs, columns, Walls and
	Foundations
CO3	Design the form work for Special Structures
CO4	Describe the working of flying formwork.
CO5	Judge the formwork failures through case studies

REFERENCES:

- 1. Formwork for Concrete Structures, R.L.Peurifoy, McGraw Hill India, 2010.
- 2. Formwork for Concrete Structures, Kumar NeerajJha, Tata McGraw Hill Education, 2012.
- 3. IS 14687: 1999, False work for Concrete Structures Guidelines, BIS.
- 4. Hurd, M.K., Formwork for Concrete, Special Publication No.4, American Concrete Institute, Detroit, 1996
- 5. Michael P. Hurst, Construction Press, London and New York, 2003.

CO-PO-PSO MAPPING

	PO			PSO		
CO	1	2	3	1	2	3
1	3	-	-	2	2	1
2	3	DE1CT	2	2	2	2
3	3	2	3	2	2	3
4	3	-	-	2	3	2
5	2	2	2	2	3	2
Avg	2.8	1.67	2.33	2	3	2

ST4073 MAINTENANCE, REPAIR AND REHABILITATION OF STRUCTURES LTPC

OBJECTIVE:

• To study the damages, repair and rehabilitation of structures

UNIT I MAINTENANCE AND REPAIR STRATEGIES

Maintenance, Repair and Rehabilitation, retrofit and strengthening, need for rehabilitation of structures- Service life behaviour - importance of Maintenance, causes and effects of deterioration. Non-destructive Testing Techniques

9

9

9

9

3003

UNIT II STRENGTH AND DURABILITY OF CONCRETE

Quality assurance for concrete based on Strength, Durability and Microstructure of concrete - NDT techniques- Cracks- different types, causes – Effects due to Environment, Fire, Earthquake, Corrosion of steel in concrete, Mechanism, quantification of corrosion damage

UNIT III REPAIR MATERIALS AND SPECIAL CONCRETES

Repair materials-Various repair materials, Criteria for material selection, Methodology of selection, Special mortars and concretes- Polymer Concrete and Grouting materials- Bonding agents-Latex emulsions, Epoxy bonding agents, Protective coatings-Protective coatings for Concrete and Steel, FRP sheets

UNIT IV PROTECTION METHODS AND STRUCTURAL HEALTH MONITORING

Concrete protection methods – reinforcement protection methods- cathodic protection - Sacrificial anode - Corrosion protection techniques – Corrosion inhibitors, concrete coatings-Corrosion resistant steels, Coatings to reinforcement, Structural health monitoring.

UNIT V REPAIR, RETROFITTING AND DEMOLITION OF STRUCTURES

Various methods of crack repair, Grouting, Routing and sealing, Stitching, Dry packing, Autogenous healing, Repair to active cracks, Repair to dormant cracks. Repair of various corrosion damaged of structural elements (slab, beam and columns) Jacketing Techniques, Strengthening Methods for Structural Elements. Engineered Demolition -Case studies

REFERENCES:

- 1. Dodge Woodson, Concrete Structures, Protection, Repair and Rehabilitation, Butterworth-Heinemann, Elsevier, New Delhi 2012
- 2. DovKominetzky.M.S., Design and Construction Failures, Galgotia Publications Pvt. Ltd., 2001
- 3. Ravishankar.K., Krishnamoorthy. T.S, Structural Health Monitoring, Repair and Rehabilitation of Concrete Structures, Allied Publishers, 2004.
- 4. Hand book on Seismic Retrofit of Buildings, CPWD and Indian Buildings Congress, Narosa Publishers, 2008.
- 5. Hand Book on "Repair and Rehabilitation of RCC Buildings" Director General works CPWD, Govt of India, New Delhi 2002
- 6. BS EN 1504 Products and systems for the protection and repair of concrete structures Definitions, requirements, quality control and evaluation of conformity

OUTCOMES:

• On completion of the course, the student is expected to be able to

CO1	Explain the importance of maintenance assessment and repair strategies		
CO2	Acquire knowledge of strength and durability properties and their effects due to		
	climate and temperature.		
CO3	Gain knowledge of recent developments in repair		
CO4	Explain the techniques for repair and protection methods		
CO5	Explain the repair, rehabilitation and retrofitting of structures and demolition		
	methods.		

CO-PO-PSO MAPPING

	PO			PSO		
CO	1	2	3	1	2	3
1	3	-	2	3	2	2
2	3	1	-	2	2	1
3	3	-	2	2	3	1
4	3	1	-	3	2	2
5	3	2	1	2	2	1
Avg	3	1.33	1.67	2.40	2.20	1.40

9

9

TOTAL: 45 PERIODS

MECHANICS OF FIBER REINFORCED POLYMER COMPOSITE MATERIALS

OBJECTIVE:

ST4007

• To study the behaviour of composite materials and to investigate the failure and fracture characteristics.

UNIT I INTRODUCTION

Introduction to Composites, Classifying composite materials, commonly used fiber and matrix constituents, Composite Construction, Properties of Unidirectional Long Fiber Composites and Short Fiber Composites.

UNIT II STRESS STRAIN RELATIONS

Concepts in solid mechanics, Hooke's law for orthotropic and anisotropic materials, Linear Elasticity for Anisotropic Materials, Rotations of Stresses, Strains, Residual Stresses

UNIT III ANALYSIS OF LAMINATED COMPOSITES

Governing equations for anisotropic and orthotropic plates. Angle-ply and cross ply laminates – Static, Dynamic and Stability analysis for Simpler cases of composite plates, Inter laminar stresses.

UNIT IV FAILURE AND FRACTURE OF COMPOSITES

Netting Analysis, Failure Criterion, Maximum Stress, Maximum Strain, Fracture Mechanics of Composites, Sandwich Construction.

UNIT V APPLICATIONS AND DESIGN

Meal and Ceramic Matrix Composites, Applications of Composites, Composite Joints, Design with Composites, Review, Environmental Issues

OUTCOMES:

On completion of this course, the student is expected to be able to

CO1	Explain the various types of composites and their constituents
CO2	Derive the constitutive relationship and determine the stresses and strains in a composite material
CO3	Analyze a laminated plate
CO4	Explain the various failure criteria and fracture mechanics of composites
CO5	Design simple composite elements

REFERENCES

- 1. Agarwal. B.D. Broutman. L.J. and Chandrashekara. K. "Analysis and Performance of Fiber Composites", Fourth Edition, John-Wiley and Sons, 2017
- 2. Daniel. I.M, and Ishai. O, "Engineering Mechanics of Composite Materials", Second Edition, Oxford University Press, 2005.
- 3. Hyer M.W., and White S.R., "Stress Analysis of Fiber-Reinforced Composite Materials", D.Estech Publications Inc., 2009
- 4. Jones R.M., "Mechanics of Composite Materials", Taylor and Francis Group 1999.
- 5. Mukhopadhyay.M, "Mechanics of Composite Materials and Structures", Universities Press, India, 2005.

9

9

9

TOTAL: 45 PERIODS

9

J.,

LT PC 3 0 0 3

> 9 - 3

CO-PO-PSO MAPPING

	PO			PSO		
CO	1	2	3	1	2	3
1	3	-	-	3	1	1
2	3	2	2	2	2	2
3	2	3	2	2	3	2
4	3	-	1	2	2	2
5	3	2	2	2	3	2
Avg	2.8	2.33	1.75	2.20	2.20	1.80

ST4008 DESIGN OF STEEL -CONCRETE COMPOSITE STRUCTURES L T P C 3 0 0 3

OBJECTIVE:

 To develop an understanding of the behaviour and design concrete composite elements and structures.

UNIT I INTRODUCTION

Introduction to steel – concrete composite construction – Codes – Composite action –Serviceability and Construction issues in design.

UNIT II DESIGN OF COMPOSITE MEMBERS

Design of composite beams, slabs, columns, beam - columns - Design of composite trusses.

UNIT III DESIGN OF CONNECTIONS

Shear connectors – Types – Design of connections in composite structures – Design of shear connectors – Partial shear interaction.

UNIT IV COMPOSITE BOX GIRDER BRIDGES

Introduction -Design concepts of box girder bridges and corrugated web girder bridges

UNIT V CASE STUDIES

Case studies on steel – concrete composite construction in buildings – seismic behaviour of composite structures.

TOTAL: 45 PERIODS

OUTCOMES:

On completion of the course, the student is expected to be able to

CO1	Explain composite action
CO2	Design composite elements
CO3	Design connections
CO4	Explain the concept of design of composite box girder bridges
CO5	Study and evaluate case studies

REFERENCES:

- 1. Johnson R.P., "Composite Structures of Steel and Concrete Beams, Slabs, Columns and Frames for Buildings", Vol. I, Fourth Edition, Blackwell Scientific Publications, 2018
- 2. Oehlers D.J. and Bradford M.A., "Composite Steel and Concrete Structural Members, Fundamental behaviour", Revised Edition, Pergamon press, Oxford, 2013.
- 3. Owens. G.W and Knowles. P, "Steel Designers Manual", Seventh Edition, Steel Concrete Institute(UK), Oxford Blackwell Scientific Publications, 2011.
- 4. Narayanan R, "Composite steel structures Advances, design and construction", Elsevier, Applied science, UK, 1987

9

9

q

- 9
- 9

5. Teaching resource for, "Structural Steel Design," Volume 2 of 3, Institute for Steel Development and Growth (INSDAG), 2002.

CO-PO-PSO MAPPING

	F	PO			PSO		
CO	1	2	3	1	2	3	
1	3	-	-	3	2	1	
2	3	2	2	2	2	1	
3	2	2	1	2	2	1	
4	2	2	2	2	2	2	
5	3	-	-	3	2	2	
Avg	2.6	2	1.67	2.40	2	1.40	

ST4009

DESIGN OF MASONRY STRUCTURES

OBJECTIVE:

• To design, detail and retrofit a masonry structure

UNIT I INTRODUCTION

Introduction – Masonry construction – National and International perspective – Historical development, Modern masonry, Material Properties – Masonry units: clay and concrete blocks, Mortar, grout and reinforcement, Bonding patterns, Shrinkage and differential movements.

UNIT II DESIGN OF COMPRESSION MEMBER

Principles of masonry design, Masonry standards: IS 1905 and others - Masonry in Compression – Prism strength, Eccentric loading -Kern distance. Structural Wall, Columns and Plasters, Retaining Wall, Pier and Foundation – Prestressed masonry

UNIT III DESIGN OF MASONRY UNDER LATERAL LOADS

Masonry under Lateral loads – In-plane and out-of-plane loads, Ductility of Reinforced Masonry Members Analysis of perforated shear walls, Lateral force distribution -flexible and rigid diaphragms. Behaviour of Masonry – Shear and flexure – Combined bending and axial loads – Reinforced and unreinforced masonry – Infill masonry

UNIT IV EARTHQUAKE RESISTANT DESIGN OF MASONRY STRUCTURES

Structural design of Masonry – Consideration of seismic loads –concepts of confined masonry – Cyclic loading and ductility of shear walls for seismic design -Code provisions- Working and Ultimate strength design – In-plane and out-of-plane design criteria for load-bearing and infills, connecting elements and ties. Modeling Techniques, Static Push Over Analysis and use of Capacity Design Spectra – use of Software.

UNIT V RETROFITTING OF MASONRY

Seismic evaluation and Retrofit of Masonry – In-situ and non-destructive tests for masonry – properties – Repair and strengthening of techniques.

TOTAL: 45 PERIODS

OUTCOMES:

• On completion of the course, the student is expected to be able to

CO1	Explain the properties of a masonry unit and the various components
CO2	Design a masonry structure for compression
CO3	Design a masonry structure for lateral loads
CO4	Design an earthquake-resistant masonry wall
CO5	Suggest retrofitting techniques for existing masonry walls

9

L T P C 3 0 0 3

a

9

9
REFERENCES:

- 1. Drysdale, R. G. Hamid, A. H. and Baker, L. R, "Masonry Structures: Behaviour & Design", Prentice Hall Hendry, 1994.
- 2. A.W. Hendry, B.P. Sinha and Davis, S. R, "Design of Masonry Structures", E & FN Spon, UK, 2017.
- 3. R.S. Schneider and W.L. Dickey, "Reinforced Masonry Design", Prentice Hall, 3rd edition, 1994.
- 4. Paulay, T. and Priestley, M. J. N., "Seismic Design of Reinforced Concrete and Masonry Buildings", John Wiley, 1992.
- 5. A.W. Hendry, "Structural Masonry", 2nd Edition, Palgrave McMillan Press, 1998.

CO-PO-PSO MAPPING

	PO			PSO		
CO	1	2	3	1	2	3
1	3	-	-	3	2	2
2	3	2	2	2	2	3
3	3	2	2	3	2	2
4	3	2	2	2	2	3
5	3		-	3	2	2
Avg	3	2	2	2.60	2	2.40

ST4010

DESIGN OF INDUSTRIAL STRUCTURES

OBJECTIVE:

To disseminate knowledge about planning and design of RCC and Steel Industrial structures.

UNIT I PLANNING AND FUNCTIONAL REQUIREMENTS

Classification of Industries and Industrial structures - planning for Layout Requirements regarding Lighting, Ventilation and Fire Safety - Protection against noise and vibration - Guidelines of Factories Act.

INDUSTRIAL BUILDINGS UNIT II

Steel and RCC - Gantry Girder, Crane Girders - Design of Corbels and Nibs - Design of Staircase.

UNIT III POWER PLANT STRUCTURES

Types of power plants - Containment structures - Cooling Towers - Bunkers and Silos - Pipe Rack and supporting structures

UNIT IV TRANSMISSION LINE STRUCTURES AND CHIMNEYS

Analysis and design of steel monopoles, transmission line towers – Sag and Tension calculations, Methods of tower testing – Design of self-supporting and guyed chimney, Design of Chimney bases.

UNIT V FOUNDATION

Foundation for Towers, Chimneys and Cooling Towers – Design of Block foundations for machines -Design of Turbo Generator Foundation.

TOTAL: 45 PERIODS

9

9

9

9

LTPC 3003

OUTCOMES:

• On completion of the course, the student is expected to be able to

CO1	Develop the concept of planning & functional requirements of industrial standards.
CO2	Analyse and design Steel Gantry girders & Crane girders and RCC design of corbels, nibs and staircase.
CO3	Analyse & design cooling towers, bunkers, silos and pipe supporting structures.
CO4	Analyse and design Steel transmission line towers and chimneys.
CO5	Design foundations for cooling tower, chimneys and turbo generator.

REFERENCES:

- 1. Jurgen Axel Adam, Katharria Hausmann, Frank Juttner, Klauss Daniel, Industrial Buildings: A Design Manual, Birkhauser Publishers, 2004.
- 2. Santhakumar A.R. and Murthy S.S., Transmission Line Structures, Tata McGraw Hill, 1992.
- 3. Swami saran, Analysis & Design of substructures, Limit state Design second Edition.2018.
- 4. N.Subramaniyan, Design of Steel Structures, United Press, 2018
- 5. N. Krishna Raju, Advanced Reinforced concrete Design, 3rd edition 2016,

CO-PO-PSO MAPPING

	PO			PSO		
CO	1	2	3	1	2	3
1	3		-	3	2	2
2	3	2	2	3	3	2
3	3	2	2	2	3	3
4	3	2	2	3	2	3
5	3	2	2	2	3	3
Avg	3	2	2	2.6	2.60	2.60

ST4011

ADVANCED DESIGN OF FOUNDATION STRUCTURES LTPC

OBJECTIVE:

To design various types of foundations to fulfill the required criteria.

UNIT I SHALLOW FOUNDATIONS

soil investigation - Types of foundations and their specific applications - depth of foundation bearing capacity and settlement estimates - structural design of isolated, strip, rectangular and trapezoidal and combined footings - strap - raft foundation.

PILE FOUNDATIONS UNIT II

Types of Pile foundations and their applications - Load Carrying capacity - pile load test -Settlements – Group action – pile cap – structural design of piles and pile caps – undreamed pile foundation. 9

UNIT III WELL FOUNDATION

Types of well foundations - grip length - load carrying capacity - construction of wells - failure and remedies - structural design of well foundation - lateral stability.

UNIT IV MACHINE FOUNDATIONS

Types - General requirements and design criteria - General analysis of machine foundations-soil system - Stiffness and damping parameters - Tests for design parameters - design of foundation for reciprocating engines, impact type machines and rotary type machines.

9

3 0 0 3

UNIT V SPECIAL FOUNDATIONS

General requirements and design criteria – Foundations for towers, Chimneys and Silos – design of anchors

TOTAL: 45 PERIODS

OUTCOMES:

On completion of this course student will be able to

CO1	Design shallow and deep foundations for various types of structures
CO2	Design piles and pile caps
CO3	Design well foundation for bridge piers and related structures
CO4	Gain knowledge on design and construction of machine foundation
CO5	Design foundations for bridges, towers and chimneys

REFERENCES:

- 1. Tomlinson, M.J. and Boorman. R., Foundation Design and Construction, ELBS Longman, Seventh Edition, 2001.
- 2. Nayak, N.V., Foundation Design manual for Practicing Engineers, Dhanpat Rai and Sons, 2018.
- 3. Brain J. Bell and M.J. Smith, Reinforced Concrete Foundations, George Godwin Ltd., 1981.
- 4. Braja M. Das, Principles of Foundations Engineering, Eighth Edition, Thomson Asia (P) Ltd., 2017.
- 5. Bowels J.E., Foundation Analysis and Design, Fifth Edition, McGraw-Hill International Book Co., 2017.

CO-PO-PSO MAPPING

	-	PO		PSO		
CO	1	2	3	1	2	3
1	3	2	2	3	2	2
2	3	3	2	2	3	2
3	3	2	2	3	3	3
4	3	2	2	3	2	2
5	3	2	2	2	3	2
Avg	3	2.2	2	2.60	2.60	2.20

PROGRESS THROUGH KNOWLEDGE

ST4012

OPTIMIZATION OF STRUCTURES

LTPC 3003

q

9

OBJECTIVE:

• To study the optimization methodologies applied to structural engineering

UNIT I BASIC PRINCIPLES AND CLASSICAL OPTIMIZATION TECHNIQUES

Definition – Objective Function; Constraints – Equality and inequality – Linear and non-linear Side, Non-negativity, Behaviour and other constraints – Design space – Feasible and infeasible- Convex and Concave – Active constraint – Local and global optima. Differential calculus – Optimality criteria – Single variable optimization – Multivariable optimization with no constraints- - (Lagrange Multiplier method) – with inequality constraints (Khun – Tucker Criteria).

UNIT II LINEAR AND NON-LINEAR PROGRAMMING

LINEAR PROGRAMMING: Formulation of problems -Graphical solution – Analytical methods- Standard form - Slack, surplus and artificial variables – Canonical form – Basic feasible solution - simplex method – Two phase method – Penalty method- Duality theory – Primal – Dual algorithm, Dual Simplex method. Non-linear programming: One Dimensional minimization methods: Unidimensional - Unimodal function – Exhaustive and unrestricted search – Dichotomous search -

Fibonacci Method - Golden section method -Interpolation methods. Unconstrained optimization Techniques.

UNIT III **GEOMETRIC PROGRAMMING**

Polynomial - degree of difficulty - reducing G.P.P to a set of simultaneous equations -Unconstrained and constrained problems with zero difficulty - Concept of solving problems with one degree of difficulty.

UNIT IV DYNAMIC PROGRAMMING

of optimality - Representation of a multistage decision problem- concept of Bellman's principle sub-optimization problems using classical and tabular methods.

UNIT V STRUCTURAL APPLICATIONS

Methods for optimal design of structural elements, continuous beams and single storied frames using plastic theory -Minimum weight design for truss members - Fully stressed design -Optimization principles to design of R.C. structures such as multistory buildings, water tanks and bridges.

TOTAL: 45 PERIODS

OUTCOMES:

On completion of the course, the student is expected to be able to

CO1	Apply the knowledge of engineering fundamentals to formulate and solve engineering						
	problems by classical optimization techniques.						
CO2	Identify, formulate and solve engineering problems by linear and non-linear						
	programming.						
CO3	Analyse the problem and reduce G.P.P to a set of simultaneous equations.						
CO4	Apply the Engineering knowledge to understand the concept of dynamic programming.						
CO5	Design various structural elements with minimum weight.						

REFERENCES:

- 1. Iyengar. N.G.R and Gupta. S.K, "Structural Design Optimization", Affiliated East West Press Ltd, New Delhi, 1997
- 2. Rao, S.S. "Engineering Optimization: Theory and Practice", Fourth Edition, Wiley Eastern (P) Ltd., 2013.
- 3. Spunt, "Optimization in Structural Design", Civil Engineering and Engineering Mechanics Services, Prentice-Hall, New Jersey 1971.
- 4. Uri Kirsch, "Optimum Structural Design", McGraw Hill Book Co. 1981.
- 5. Haftka, R. T. and Gurdal, Z., Elements of Structural Optimization, Springer, 3 rd Edition, 1992

CO-PO	-PSO MAPI	PING					
			PO				
	CO	1	2	3	1	2	3
	1	3	2	2	3	2	2
	2	3	3	3	2	3	3
	3	3	3	3	2	3	2
	4	3	-	1	3	2	2
	5	3	2	2	2	2	2
	Avg	3	2.5	2.2	2.40	2.40	2.20

ST4013

OBJECTIVE:

STRUCTURAL HEALTH MONITORING

LTPC 3 0 0 3

• To make the students familiar with various structural health monitoring tools and techniques.

UNIT I INTRODUCTION TO STRUCTURAL HEALTH MONITORING

9

a

9

Need for SHM, Structural Health Monitoring versus Non-Destructive Evaluation, Methods of SHM-Local & Global Techniques for SHM, Short & Long-Term Monitoring, Active & Passive Monitoring, Remote Structural Health Monitoring- Advantages of SHM - Challenges in SHM

UNIT II SENSORS AND INSTRUMENTATION FOR SHM

Sensors for measurements: Electrical Resistance Strain Gages, Vibrating Wire Strain Gauges, Fiber Optic Sensors, Temperature Sensors, Accelerometers, Displacement Transducers, Load Cells, Humidity Sensors, Crack Propagation Measuring Sensors, Corrosion Monitoring Sensors, Pressure Sensors, Data Acquisition – Data Transmission - Data Processing – Storage of processed data - Knowledgeable information processing

UNIT III STATIC AND DYNAMIC MEASUREMENT TECHNIQUES FOR SHM

Static measurement - Load test, Concrete core trepanning, Flat jack techniques, Static response measurement, Dynamic measurement -Vibration based testing- Ambient Excitation methods, Measured forced Vibration-Impact excitation, step relaxation test, shaker excitation method.

UNIT IV DAMAGE DETECTION

Damage Diagnostic methods based on vibrational response- Method based on modal frequency/shape/damping, Curvature and flexibility method, Modal strain energy method, Sensitivity method, Baseline-free method, Cross-correlation method, Damage Diagnostic methods based on wave propagation Methods-Bulk waves/Lamb waves, Reflection and transmission, Wave tuning/mode selectivity, Migration imaging, Phased array imaging, Focusing array/SAFT imaging

UNIT V DATA PROCESSING AND CASE STUDIES

Advanced signal processing methods -Wavelet, Hilbert-Huang transform, Neural networks, Support Vector Machine Principal component analysis, Outlier analysis. Applications of SHM on bridges and buildings, case studies of SHM in Civil/ Structural engineering.

TOTAL: 45 PERIODS

OUTCOMES:

On completion of this course, the student is expected to be able to

- CO1 Understand the need, advantages and challenges of SHM
- **CO2** Know the different types of sensors and instrumentation techniques

CO3 Gain knowledge of the static and dynamic measurement techniques

CO4 Compare the various damage detection techniques

CO5 Know the various data processing methods through case studies

REFERENCES

- 1. Daniel Balageas, Peter Fritzen, Alfredo Guemes, Structural Health Monitoring, John Wiley & Sons,2006.
- 2. Douglas E Adams, Health Monitoring of Structural Materials and Components Methods with Applications, Wiley Publishers, 2007
- 3. Hua-Peng Chen, Structural Health Monitoring of Large Civil Engineering Structures, Wiley Publishers, 2018
- 4. Ansari, F Karbhari, Structural health monitoring of civil infrastructure systems, V.M,Woodhead Publishing, 2009
- 5. J. P. Ou, H. Li and Z. D, "Duan Structural Health Monitoring and Intelligent Infrastructure", Vol1, Taylor and Francis Group, London, UK, 2006.
- 6. Victor Giurglutiu, "Structural Health Monitoring with Wafer Active Sensors", Academic Press Inc, 2007.

CO-PO-PSO MAPPING

	PO			PSO		
СО	1	2	3	1	2	3
1	2	-	-	2	2	2
2	2	1	3	2	2	2
3	2	-	-	3	2	2

9

9

9

	4	3	2	3	2	2	2]			
	5	3	3	-	3	2	2				
	Avg	2.4	2	3	2.40	2	2]			
ST401	4	I	DESIGN OF	OFFSHORE	E STRUCTU	RES		TPC			
 OBJECTIVE: To impart knowledge about the concept of wave theories, forces, offshore foundation, analysis and design of jacket towers, pipes and cables. 											
UNIT IWAVE THEORIES9Wave generation process, small, finite amplitude and nonlinear wave theories.9											
UNIT I Wind fo		ORCES OF O			-	t forces - Mc	orison equation	9 on.			
UNIT II Differe modeli	nt types o	FFSHORE SC f offshore stru	-				structural	9			
UNIT I Static r		NALYSIS OF analysis, four				hore structur	es.	9			
UNIT V Design		ESIGN OF OF rms, helipads,			-						
						то	TAL: 45 PE	RIODS			
• OI		ion of the cour Develop the co			ed to be able	e to					
	CO2		•		d offshore s	tructures					
	CO2 Apply the knowledge of wave forces and offshore structuresCO3 Explain the modeling for offshore structure and its foundation										
	CO4	· ·	Ū	the second se			thode				
	CO5	Design of Jack	et towers, m	ooring cable	s and pipelin	ies					
DEEEE											

REFERENCES:

- 1. Chakrabarti, S.K., Handbook of Offshore Engineering by, Elsevier, 2005.
- 2. Chakrabarti, S.K., Hydrodynamics of Offshore Structures, Springer Verlag, 2003.
- 3. Chakrabarti, S.K. 1994, Offshore Structure Modelling: World Scientific
- 4. Chandrasekaran, S. 2017. Dynamic analysis and design of ocean structures.
- 5. B. Gou, S.Song, J Chacko and A. Ghalambar, offshore pipelines, GPP publishers, 2006.

CO-PO-PSO MAPPING

	PO			PSO		
CO	1	2	3	1	2	3
1	3	-	-	3	1	2
2	3	2	-	3	2	1
3	3	2	2	2	1	1
4	3	1	2	2	2	2
5	3	2	2	3	2	2
Avg	3	1.75	2	2.60	1.60	1.60

ST4015 PERFORMANCE OF STRUCTURES WITH SOIL STRUCTURE INTERACTION

OBJECTIVE:

• To study the concept of soil-structure – interaction in the analysis and design of structures.

UNIT I SOIL-FOUNDATION INTERACTION

Introduction to soil-foundation interaction problems – Soil behaviour – Foundation behaviour-Interface behaviour- Scope of soil foundation interaction analysis- soil response models–Elastic continuum- Two parameter elastic models- Elastic-plastic behaviour- Time dependent behaviour.

UNIT II BEAM ON ELASTIC FOUNDATION- SOIL MODELS

Infinite beam – Two-parameters models – Isotropic elastic half space model – Analysis of beams of finite length – combined footings.

UNITIII PLATES ON ELASTIC CONTINUUM

Thin and thick rafts – Analysis of finite plates - Numerical analysis of finite plates.

UNIT IV ANALYSIS OF AXIALLY AND LATERALLY LOADED PILES AND PILE GROUPS 9

Elastic analysis of single pile – Theoretical solutions for settlement and load distributions – Analysis of pile group – Interaction analysis – Load distribution in groups with rigid cap – Load deflection prediction for laterally loaded piles – Subgrade reaction and elastic analysis – Interaction analysis – Pile-raft system.

UNIT V GROUND-FOUNDATION-STRUCTURE INTERACTION

Effect of structure on ground-foundation interaction – Static and dynamic loads- Contact pressure and its estimation – Estimation of the settlement from the constitutive laws – Free-field response – Kinetic interaction – Inertial interaction

TOTAL: 45 PERIODS

OUTCOMES:

• On completion of the course, the student is expected to be able to

CO1	Explain the concept of soil structure interaction.
CO2	Do a static analysis of infinite and finite beams resting on elastic foundation
CO3	Analyse finite thin and thick plates
CO4	Do a static and dynamic analysis of soil structure interaction problems
CO5	Analyze ground foundation and structure interaction problems

REFERENCES:

- 1. John P. Wolf, (1985) Soil-structure interaction, Prentice Hall, 1987.
- 2. Bowels, J.E., "Analytical and Computer methods in Foundation" McGraw Hill Book Co., New York., 1974
- 3. Desai C.S. and Christian J.T., "Numerical Methods in Geotechnical Engineering" McGraw Hill Book Co. New York,1977.
- 4. Soil Structure Interaction, the real behaviour of structures, Institution of Structural Engineers, 1989.
- 5. A.P.S. Selvadurai, Elastic Analysis of Soil Foundation Interaction, Developments in Geotechnical Engg.vol-17, Elsevier Scientific Publishing Co., 1979.
- 6. Prakash, S., and Sharma, H. D., "Pile Foundations in Engineering Practice." John Wiley & Sons, New York, 1990.
- 7. Rolando P. Orense, Nawawi Chouw& Michael J. Pender Soil-Foundation-Structure Interaction, CRC Press, Taylor & Francis Group, London, UK, 2010.

L T P C 3 0 0 3

~

9

9

CO-PO-PSO MAPPING

		PO		PSO		
CO	1	2	3	1	2	3
1	3	-	-	3	2	2
2	3	2	2	2	3	3
3	3	2	2	2	3	3
4	3	2	3	3	2	2
5	3	2	3	3	2	2
Avg	3	2	2.5	2.60	2.40	2.40

ST4091 DESIGN OF BRIDGE STRUCTURES

L T P C 3 0 0 3

9

9

9

9

9

OBJECTIVE:

• To study the loads, forces on bridges and design principles of several types of bridges.

UNIT I INTRODUCTION

Introduction-Selection of Site and Initial Decision Process - Classification of Bridges- General Features of Design- Standard Loading for Bridge Design as per different codes - Road Bridges – Railway Bridges - Design Codes - Working Stress Method- Limit State Method of Design

UNIT II SUPERSTRUCTURES

Selection of main bridge parameters, design methodologies -Choices of superstructure types -Orthotropic plate theory, load distribution techniques - Grillage analysis - Finite element analysis Different types of superstructure (RCC and PSC); Longitudinal Analysis of Bridge - Transverse Analysis of Bridge

UNIT III BRIDGE DESIGN PRINCIPLES

Analysis and Design of RCC solid slab culverts -Design of RCC Tee beam and slab bridges - Design principles of continuous girder bridges, box girder bridges, balanced cantilever bridges – Arch bridges – Box culverts – Segmental bridges–Design principles only

UNIT IV SUBSTRUCTURE, BEARINGS AND DECK JOINTS

Design of bridge bearings and substructure

UNIT V PRESTRESSED CONCRETE BRIDGES & STEEL BRIDGES

Design principles of PSC bridges – PSC girders –Design principles of steel bridges - Plate girder bridges – Box girder bridges – Truss bridges – Vertical and Horizontal stiffeners.3

TOTAL: 45 PERIODS

OUTCOMES:

• On completion of this course, student will be able to

CO1	Explain the different types of bridges and design philosophies
CO2	Design an RC solid slab culvert bridge
CO3	Design an RC Tee Beam and Slab bridge
CO4	Design the bridge bearings and substructure
CO5	Explain the design principles of PSC bridges, box girder bridges, truss bridges

REFERENCES:

- 1. Jagadeesh. T.R. and Jayaram. M.A., "Design of Bridge Structures", Second Edition, Prentice Hall of India Pvt. Ltd. 2009.
- 2. Johnson Victor, D. "Essentials of Bridge Engineering", Sixth Edition, Oxford and IBH Publishing Co. New Delhi, 2019.
- 3. Ponnuswamy, S., "Bridge Engineering", Third Edition, Tata McGraw Hill, 2017.
- 4. Raina V.K." Concrete Bridge Practice" Tata McGraw Hill Publishing Company, New Delhi,2014.
- 5. Design of Highway Bridges, Richard M. Barker & Jay A. Puckett, John Wiley & Sons, Inc., 2021

CO-PO-PSO MAPPING

	PO					
CO	1	2	3	1	2	3
1	3	-	-	3	1	2
2	3	2	2	2	3	3
3	3	2	2	2	3	2
4	3	2	2	2	3	3
5	3	2	2	2	3	3
Avg	3	2	2	2.20	2.60	2.60

ST4016DESIGN OF SHELL AND SPATIAL STRUCTURESL T P C3 0 0 3

OBJECTIVE:

 To study the behaviour and design of shells, folded plates, space frames and application of FORMIAN software.

UNITI CLASSIFICATION OF SHELLS

Classification of shells, types of shells, structural action, - Design of circular domes, conical roofs, circular cylindrical shells by ASCE Manual No.31.

UNIT II FOLDED PLATES

Folded Plate structures, structural behaviour, types, design by ACI - ASCE Task Committee method – pyramidal roof- Prismoidal roof.

UNIT III INTRODUCTION TO SPACE FRAME

Space frames - configuration - types of nodes - Design Philosophy - Behaviour.

UNIT IV ANALYSIS AND DESIGN

Analysis of space frames – Design of Nodes – Pipes - Space frames – Introduction to Computer-Aided Design.

UNIT V SPECIAL METHODS

Application of Formex Algebra, FORMIAN for generation of configuration.

TOTAL: 45 PERIODS

9

9

9

9

9

OUTCOMES:

On completion of this course, the student is expected to be able to

CO1	Explain the different forms of shells and design the domes and shells
CO2	Evaluate the structural behaviour and design of folded plate structures
CO3	Explain the various functional configurations of space frames

CO4	Design of space frames and apply the knowledge of CAD for the analysis of space
	structures
CO5	Analyse the configurations of space structures using FORMIAN software

REFERENCES

- 1. Billington. D.P, "Thin Shell Concrete Structures", McGraw Hill Book Co., New York, ASCE Manual No.31, Design of Cylindrical Shells,1982.
- 2. Varghese. P.C., Design of Reinforced Concrete Shells and Folded Plates, PHI Learning Pvt. Ltd., 2010.
- 3. Subramanian. N," Space Structures: Principles and Practice", Multi-Science Publishing Co. Ltd. 2008.
- 4. Ramasamy, G.S., "Analysis, Design and Construction of Steel Space Frames", Thomas Telford Publishing, 2002.
- 5. Wilby. C "Concrete Folded Plate Roofs", Elsevier, 1998.

CO-PO-PSO MAPPING

	PO			PSO		
CO	1	2	3	1	2	3
1	3	2	2	3	3	2
2	3	2		3	2	2
3	2		-	2	2	2
4	2	2	2	2	2	2
5	3	3	3	2	2	2
Avg	2.6	2.25	2.33	2.20	2.20	2

PROGRESS THROUGH KNOWLEDGE

AUDIT COURSES

AX4091 ENGLISH FOR RESEARCH PAPER WRITING

LTPC 2000

OBJECTIVES

- Teach how to improve writing skills and level of readability •
- Tell about what to write in each section •
- Summarize the skills needed when writing a Title •
- Infer the skills needed when writing the Conclusion •
- Ensure the quality of paper at very first-time submission •

UNIT I INTRODUCTION TO RESEARCH PAPER WRITING

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

UNIT II PRESENTATION SKILLS

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts, Introduction

TITLE WRITING SKILLS UNIT III

Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check

RESULT WRITING SKILLS UNIT IV

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions

VERIFICATION SKILLS UNIT V

Useful phrases, checking Plagiarism, how to ensure paper is as good as it could possibly be the firsttime submission

OUTCOMES

- CO1 Understand that how to improve your writing skills and level of readability
- CO2 Learn about what to write in each section
- CO3 Understand the skills needed when writing a Title
- CO4 Understand the skills needed when writing the Conclusion

CO5 - Ensure the good quality of paper at very first-time submission

REFERENCES

- Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht 1. Heidelberg London, 2011
- 2. Day R How to Write and Publish a Scientific Paper. Cambridge University Press 2006
- Goldbort R Writing for Science, Yale University Press (available on Google Books) 2006 3.
- Highman N, Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book 4. 1998.

6

6

6

6

6

TOTAL: 30 PERIODS

DISASTER MANAGEMENT

AX4092

6

6

6

6

6

OBJECTIVES

- Summarize basics of disaster
- Explain a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- Illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- Describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- Develop the strengths and weaknesses of disaster management approaches

UNIT I INTRODUCTION

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

UNIT II REPERCUSSIONS OF DISASTERS AND HAZARDS

Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

UNIT III DISASTER PRONE AREAS IN INDIA

Study of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference To Tsunami; Post-Disaster Diseases and Epidemics

UNIT IV DISASTER PREPAREDNESS AND MANAGEMENT

Preparedness: Monitoring Of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological And Other Agencies, Media Reports: Governmental and Community Preparedness.

UNIT V RISK ASSESSMENT

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival

TOTAL: 30 PERIODS

OUTCOMES

- CO1: Ability to summarize basics of disaster
- CO2: Ability to explain a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- CO3: Ability to illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- CO4: Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- CO5: Ability to develop the strengths and weaknesses of disaster management approaches

REFERENCES

- 1. Goel S. L., Disaster Administration and Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi,2009.
- 2. Nishitha Rai, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company,2007.
- 3. Sahni, Pardeep et.al.," Disaster Mitigation Experiences and Reflections", Prentice Hall of India, New Delhi,2001.

TOTAL: 30 PERIODS

OBJECTIVES

Students will be able to:

- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional Role and entitlement to civil and economic rights as well as the emergence nation hood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolutionin1917and its impact on the initial drafting of the Indian Constitution.

UNIT I HISTORY OF MAKING OF THE INDIAN CONSTITUTION

History, Drafting Committee, (Composition & Working)

UNIT II PHILOSOPHY OF THE INDIAN CONSTITUTION

Preamble, Salient Features

UNIT III CONTOURS OF CONSTITUTIONAL RIGHTS AND DUTIES

Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

UNIT IV ORGANS OF GOVERNANCE

Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions.

UNIT V LOCAL ADMINISTRATION

District's Administration head: Role and Importance, □Municipalities: Introduction, Mayor and role of Elected Representative, CEO, Municipal Corporation. Panchayat raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO Zila Panchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy.

UNIT VI ELECTION COMMISSION

Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners - Institute and Bodies for the welfare of SC/ST/OBC and women.

OUTCOMES

Students will be able to:

- Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization
- of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party[CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
- Discuss the passage of the Hindu Code Bill of 1956.

SUGGESTED READING

- The Constitution of India, 1950 (Bare Act), Government Publication.
- Dr.S.N.Busi, Dr.B. R.Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- M.P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

AX4094	நற்றமிழ் இலக்கியம் L T P 2 0 0	C 0
UNITI	சங்க இலக்கியம் தமிழின் துவக்க நூல் தொல்காப்பியம் எழுத்து, சொல், பொருள் அகநானூறு (82)	6
UNIT II	அறநெறித் தமிழ் 1. அறநெறி வகுத்த திருவள்ளுவர் - அறம் வலியுறுத்தல், அன்புடைமை, ஒப்புரவறிதல், ஈகை, புகழ் 2. பிற அறநூல்கள் - இலக்கிய மருந்து – ஏலாதி, சிறுபஞ்சமூலம், திரிகடுகம், ஆசாரக்கோவை (தூய்மையை வலியுறுத்தும் நூல்)	6
UNIT III	இரட்டைக் காப்பியங்கள் 1. கண்ணகியின் புரட்சி - சிலப்பதிகார வழக்குரை காதை சமூகசேவை இலக்கியம் மணிமேகலை - சிறைக்கோட்டம் அறக்கோட்டமாகிய காதை	6
UNITIV	அருள்நெறித் தமிழ் 1. சிறுபாணாற்றுப்படை - பாரி முல்லைக்குத் தேர் கொடுத்தது, பேகன் மயிலுக்குப் போர்வை கொடுத்தது, அதியமான் ஔவைக்கு நெல்லிக்கனி கொடுத்தது, அரசர் பண்புகள் 2. நற்றிணை - அன்னைக்குரிய புன்னை சிறப்பு 3. திருமந்திரம் (617, 618) - இயமம் நியமம் விதிகள் 4. தர்மச்சாலையை நிறுவிய வள்ளலார் 5. புறநானூறு - சிறுவனே வள்ளலானான் 6. அகநானூறு (4) - வண்டு நற்றிணை (11) - நண்டு கலித்தொகை (11) - யானை, புறா ஐந்திணை 50 (27) - மான் ஆகியவை பற்றிய செய்திகள்	6

UNIT V நவீன தமிழ் இலக்கியம்

- 1. உரைநடைத் தமிழ்,
- தமிழின் முதல் புதினம்,
- தமிழின் முதல் சிறுகதை,
- கட்டுரை இலக்கியம்,
- பயண இலக்கியம்,
- நாடகம்.
- 2. நாட்டு விடுதலை போராட்டமும் தமிழ் இலக்கியமும்,
- 3. சமுதாய விடுதலையும் தமிழ் இலக்கியமும்,
- பெண் விடுதலையும் விளிம்பு நிலையினரின் மேம்பாட்டில் தமிழ் இலக்கியமும்,
- 5. அறிவியல் தமிழ்,
- 6. இணையத்தில் தமிழ்,
- 7. சுற்றுச்சூழல் மேம்பாட்டில் தமிழ் இலக்கியம்.

TOTAL: 30 PERIODS

தமிழ் இலக்கிய வெளியீடுகள் / புத்தகங்கள்

- 1. தமிழ் இணைய கல்விக்கழகம் (Tamil Virtual University) www.tamilvu.org
- 2. தமிழ் விக்கிப்பீடியா (Tamil Wikipedia) -https://ta.wikipedia.org
- 3. தர்மபுர ஆதீன வெளியீடு
- 4. வாழ்வியல் களஞ்சியம் தமிழ்ப் பல்கலைக்கழகம், தஞ்சாவூர்
- 5. தமிழ்கலைக் களஞ்சியம் தமிழ் வளர்ச்சித் துறை (thamilvalarchithurai.com)
- 6. அறிவியல் களஞ்சியம் தமிழ்ப் பல்கலைக்கழகம், தஞ்சாவூர்

PROGRESS THROUGH KNOWLED GE